1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use alloc::{boxed::Box, vec::Vec};

/// Byte span of ast fragment
pub type Span = core::ops::Range<usize>;

/// Compute an optional byte span of an ast fragment

pub trait OptSpanned {
    /// Compute an optional byte span of an ast fragment
    fn opt_span(&self) -> Option<Span>;

    /// Compute the minimal span containing both self and other
    /// if either is missing return the other
    fn opt_join_span(&self, other: &impl OptSpanned) -> Option<Span> {
        if let Some(l) = self.opt_span() {
            Some(l.join_span(other))
        } else {
            other.opt_span()
        }
    }
}

/// Compute byte span of an ast fragment
pub trait Spanned {
    /// Compute byte span of an ast fragment
    fn span(&self) -> Span;

    /// Compute the minimal span containing both self and other
    fn join_span(&self, other: &impl OptSpanned) -> Span {
        let l = self.span();
        if let Some(r) = other.opt_span() {
            usize::min(l.start, r.start)..usize::max(l.end, r.end)
        } else {
            l
        }
    }
}

impl<T: Spanned> OptSpanned for T {
    fn opt_span(&self) -> Option<Span> {
        Some(self.span())
    }
}

impl Spanned for Span {
    fn span(&self) -> Span {
        self.clone()
    }
}

impl<T: Spanned> Spanned for Box<T> {
    fn span(&self) -> Span {
        self.as_ref().span()
    }
}

impl<T: OptSpanned> OptSpanned for Option<T> {
    fn opt_span(&self) -> Option<Span> {
        match &self {
            Some(v) => v.opt_span(),
            None => None,
        }
    }
}

impl<T: OptSpanned> OptSpanned for Vec<T> {
    fn opt_span(&self) -> Option<Span> {
        self.iter().fold(None, |a, b| a.opt_join_span(b))
    }
}

impl<T: OptSpanned> OptSpanned for [T] {
    fn opt_span(&self) -> Option<Span> {
        self.iter().fold(None, |a, b| a.opt_join_span(b))
    }
}

impl<S: Spanned> Spanned for (usize, S) {
    fn span(&self) -> Span {
        self.1.span()
    }
}

impl<S: Spanned> Spanned for (usize, usize, S) {
    fn span(&self) -> Span {
        self.2.span()
    }
}

impl<S: Spanned> Spanned for (u32, S) {
    fn span(&self) -> Span {
        self.1.span()
    }
}

impl<S: Spanned> Spanned for (u64, S) {
    fn span(&self) -> Span {
        self.1.span()
    }
}

impl<S: Spanned> Spanned for (f64, S) {
    fn span(&self) -> Span {
        self.1.span()
    }
}

impl<S: Spanned> Spanned for (bool, S) {
    fn span(&self) -> Span {
        self.1.span()
    }
}

impl<'a, S: Spanned> Spanned for (&'a str, S) {
    fn span(&self) -> Span {
        self.1.span()
    }
}

impl<'a, S: Spanned> Spanned for (alloc::borrow::Cow<'a, str>, S) {
    fn span(&self) -> Span {
        self.1.span()
    }
}

impl<S: Spanned, O: OptSpanned> Spanned for (S, O) {
    fn span(&self) -> Span {
        self.0.join_span(&self.1)
    }
}

impl<T1: Spanned, T2: OptSpanned, T3: OptSpanned> Spanned for (T1, T2, T3) {
    fn span(&self) -> Span {
        self.0.join_span(&self.1).join_span(&self.2)
    }
}