1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//! # Welcome to `spv-rs`!
//!
//! [![crates](https://img.shields.io/crates/v/spv-rs)](https://crates.io/crates/spv-rs)
//! [![Rust](https://github.com/AlbinSjoegren/SPV/actions/workflows/rust.yml/badge.svg?branch=main)](https://github.com/AlbinSjoegren/SPV/actions/workflows/rust.yml)
//! ![License](https://img.shields.io/github/license/AlbinSjoegren/SPV)
//! [![Discord](https://img.shields.io/discord/831904736219365417)](https://discord.gg/x2vwWx9SsS)
//! [![DOI](https://zenodo.org/badge/416674887.svg)](https://zenodo.org/badge/latestdoi/416674887)
//!
//! [![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/S6S77U98I)
//!
//! This crate is a set of functions for either extracting or manipulating astronomcial data.
//! However it is (at least for now) mainly focused on position and velocity data.
//!
//! ### Examples
//! First if you want to see a calculator like application usecase please check the sourcecode for the `SPV` gui utility at [SPV github repo](https://github.com/AlbinSjoegren/SPV/tree/main/SPV).
//!
//! Now we will look at the position function as an example:
//! For the [`position::position`] function we use three input variables. `Parallax` for the distance to the object, you can read more about parallax [here](https://en.wikipedia.org/wiki/Stellar_parallax).
//! `Right ascension` and `Declination` is basically a dots position on a sphere where the distance we get from the `Parllax` is the radius of the sphere.
//!
//! One easy way to use this function if you had the required variables would be like this:
//!
//! ```rust
//! use spv_rs::position::position;
//! use glam::f64::DVec3;
//!
//! fn main() {
//!     let parallax = 1.5_f64;
//!     let right_ascension = 35.8_f64;
//!     let declination = 67.3_f64;
//!
//!     let body_name = "x";
//!
//!     let position = position(parallax, right_ascension, declination).to_array();
//!
//!     println!("The body {} was as the position x: {}, y: {}, z: {} at epoch J2000",
//!     body_name, position[0], position[1], position[2]);
//! }
//! ```
//! The same general principles apply to most functions.
//!
//! Now for a more complex example, let's say that we wanted to parse a csv with the collums
//! `parallax`, `right_ascension`, `declination`, `proper_motion_ra`, `proper_motion_dec` and `radial_velocity`.
//! Aka not the exact layout found in [`input_data::parse_csv_deserialize`].
//! We want the position and velocity of the bodies in the list in the cartesian coordinate system printed to the terminal for now.
//! ```
//! use spv_rs::position::position;
//! use spv_rs::velocity::velocity;
//! use csv::StringRecord;
//! use serde::Deserialize;
//! use std::error::Error;
//!  
//! #[derive(Debug, Deserialize)]
//! #[serde(rename_all = "PascalCase")]
//! struct Collums {
//!     parallax: f64,
//!     right_ascension: f64,
//!     declination: f64,
//!     proper_motion_ra: f64,
//!     proper_motion_dec: f64,
//!     radial_velocity: f64,
//! }
//!
//! fn main() {
//!     let mut data = vec![];
//!
//!     match spv_rs::input_data::parse_csv("some_file.csv") {
//!         Ok(vec) => data = vec,
//!         Err(ex) => {
//!             println!("ERROR -> {}", ex);
//!         }
//!     }
//!  
//!     let mut deserialized_data = vec![];
//!
//!     match deserialize(data) {
//!         Ok(vec) => deserialized_data = vec,
//!         Err(ex) => {
//!             println!("ERROR -> {}", ex);
//!         }
//!     }
//!  
//!     for i in deserialized_data {
//!         let position = position(i.parallax, i.right_ascension, i.declination).to_array();
//!  
//!         let velocity = velocity(i.parallax, i.right_ascension, i.declination,
//!             i.proper_motion_ra, i.proper_motion_dec, i.radial_velocity).to_array();
//!  
//!         println!("This bodies position is: ({}, {}, {}) and it's velocity is ({}, {}, {})",
//!             position[0], position[1], position[2], velocity[0], velocity[1], velocity[2])
//!     }
//! }
//!
//! fn deserialize(
//!     data: std::vec::Vec<StringRecord>
//! ) -> Result<std::vec::Vec<Collums>, Box<dyn Error>> {
//!     let mut vec = vec![];
//!
//!     for result in data {
//!         let record: Collums = result.deserialize(None)?;
//!         vec.push(record);
//!     }
//!  
//!     Ok(vec)
//! }
//! ```
//!
//! ### Extra
//!
//! Feel free to propose additions/changes, file issues and or help with the project over on [GitHub](https://github.com/AlbinSjoegren/SPV)!

/// Set of functions to calculate the position of either primary or companion bodies for diffrent usecases.
/// All outputs are in the cartesian coordinate system.
pub mod position {
    use super::common::semi_parameter;
    use super::common::true_anomaly;
    use super::coordinate_transforms::euler_angle_transformations;
    use glam::f64::{DVec2, DVec3};
    use glam::f32::Vec3;

    /// Position of a single celestial object relative to the sun.
    /// Can be used in conjuction with companion functions to place a twobody system relative to the sun.
    /// parallax is in mas (milliarcseconds), right_ascension is in degrees and declination in degrees.
    /// Output is a 3-dimensional vector with x, y and z in that order all in meters.
    pub fn position(parallax: f64, right_ascension: f64, declination: f64) -> DVec3 {
        let distance = 1. / (parallax / 1000.);

        let distnace_si = distance * (3.0856778570831 * 10_f64.powf(16.));

        let right_ascension_rad = right_ascension.to_radians();
        let declination_rad = (declination + 90.).to_radians();

        let x = distnace_si * right_ascension_rad.cos() * declination_rad.sin();

        let y = distnace_si * right_ascension_rad.sin() * declination_rad.sin();

        let z = distnace_si * declination_rad.cos();

        DVec3::new(x, y, z)
    }

    /// Same as [position::position] but with a f32 vector returned if you need that.
    pub fn position_f32(parallax: f32, right_ascension: f32, declination: f32) -> Vec3 {
        let distance = 1. / (parallax / 1000.);

        let distnace_si = distance * (3.0856778570831 * 10_f32.powf(16.));

        let right_ascension_rad = right_ascension.to_radians();
        let declination_rad = (declination + 90.).to_radians();

        let x = distnace_si * right_ascension_rad.cos() * declination_rad.sin();

        let y = distnace_si * right_ascension_rad.sin() * declination_rad.sin();

        let z = distnace_si * declination_rad.cos();

        Vec3::new(x, y, z)
    }

    /// Position on the surface of a sphere with radius in meters.
    pub fn position_surface(radius: f64, right_ascension: f64, declination: f64) -> DVec3 {
        let right_ascension_rad = right_ascension.to_radians();
        let declination_rad = (declination + 90.).to_radians();

        let x = radius * right_ascension_rad.cos() * declination_rad.sin();

        let y = radius * right_ascension_rad.sin() * declination_rad.sin();

        let z = radius * declination_rad.cos();

        DVec3::new(x, y, z)
    }

    /// Position of the companion star in a twobody system with no rotation applied.
    /// a is semi major-axis in au, e is eccentricity, period is in years and t_p is time since periastron in years.
    /// Output is a 2-dimensional vector with x and y in that order all in meters. We only need a 2-dimensional vector here
    /// due to the fact that everything is on a plane in 2D.
    pub fn companion_position(a: f64, e: f64, period: f64, t_p: f64) -> DVec2 {
        //Prep Values
        let p = semi_parameter(a, e);
        let v = true_anomaly(e, period, t_p);

        //Position of Companion in ellipse base
        let x = (p * v.cos()) / (1. + e * v.cos());
        let y = (p * v.sin()) / (1. + e * v.cos());

        DVec2::new(x, y)
    }

    /// Position of the companion star in a twobody system with rotation relative to the earth/sun plane applied.
    /// a is semi major-axis in au, e is eccentricity, period is in years, t_p is time since periastron in years,
    /// lotn is Longitude of the node (Omega) in degrees, aop is Argument of periastron (omega) in degrees and finally i is the Inclination in degrees.
    /// Output is a 3-dimensional vector with x, y and z in that order all in meters.
    pub fn companion_relative_position(
        a: f64,
        e: f64,
        period: f64,
        t_p: f64,
        lotn: f64,
        aop: f64,
        i: f64,
    ) -> DVec3 {
        //Prep Values
        let p = semi_parameter(a, e);
        let v = true_anomaly(e, period, t_p);

        //Position of Companion in ellipse base
        let x = (p * v.cos()) / (1. + e * v.cos());
        let y = (p * v.sin()) / (1. + e * v.cos());

        //Ellipse base
        let euler_angle_transformations = euler_angle_transformations(lotn, aop, i).to_cols_array();
        let x1 = euler_angle_transformations[0];
        let x2 = euler_angle_transformations[1];
        let x3 = euler_angle_transformations[2];

        let y1 = euler_angle_transformations[3];
        let y2 = euler_angle_transformations[4];
        let y3 = euler_angle_transformations[5];

        //Position in original base
        let companion_position_x = (x1 * x) + (y1 * y);
        let companion_position_y = (x2 * x) + (y2 * y);
        let companion_position_z = (x3 * x) + (y3 * y);

        DVec3::new(
            companion_position_x,
            companion_position_y,
            companion_position_z,
        )
    }
}

/// Set of functions to calculate the velocity of either primary or companion bodies for diffrent usecases.
/// All outputs are in the cartesian coordinate system.
pub mod velocity {
    use super::common::radius;
    use super::common::semi_parameter;
    use super::common::specific_mechanical_energy;
    use super::common::standard_gravitational_parameter;
    use super::common::true_anomaly;
    use super::coordinate_transforms::euler_angle_transformations;
    use super::position::position;
    use glam::f64::{DVec2, DVec3};

    /// Velocity of a single celestial object relative to the sun.
    /// Can be used in conjuction with companion functions to place a twobody system relative to the sun.
    /// parallax is in mas (milliarcseconds), right_ascension is in degrees and declination in degrees,
    /// proper_motion_ra is the right ascension part of the proper motion variable in as (arcseconds),
    /// proper_motion_dec is the declination part of the proper motion variable in as (arcseconds) and
    /// radial_velocity is in km/s.
    /// Output is a 3-dimensional vector with x, y and z in that order all in meters/second.
    pub fn velocity(
        parallax: f64,
        right_ascension: f64,
        declination: f64,
        proper_motion_ra: f64,
        proper_motion_dec: f64,
        radial_velocity: f64,
    ) -> DVec3 {
        let distance = 1. / (parallax / 1000.);

        //SI
        let distnace_si = distance * (3.0856778570831 * 10_f64.powf(16.));
        let radial_velocity_si = radial_velocity * 1000.;

        let proper_motion_x = distnace_si
            * (((right_ascension + ((proper_motion_ra * 0.00027777777777778) / 31556926.))
                .to_radians())
            .cos())
            * ((((declination + ((proper_motion_dec * 0.00027777777777778) / 31556926.)) + 90.)
                .to_radians())
            .sin());

        let proper_motion_y = distnace_si
            * (((right_ascension + ((proper_motion_ra * 0.00027777777777778) / 31556926.))
                .to_radians())
            .sin())
            * ((((declination + ((proper_motion_dec * 0.00027777777777778) / 31556926.)) + 90.)
                .to_radians())
            .sin());

        let proper_motion_z = distnace_si
            * ((((declination + ((proper_motion_dec * 0.00027777777777778) / 31556926.)) + 90.)
                .to_radians())
            .cos());

        let position = position(parallax, right_ascension, declination).to_array();

        let x = position[0];
        let y = position[1];
        let z = position[2];

        let proper_motion_vector_x = proper_motion_x - x;
        let proper_motion_vector_y = proper_motion_y - y;
        let proper_motion_vector_z = proper_motion_z - z;

        let normalized_vector_x = x / (x.powf(2.) + y.powf(2.) + z.powf(2.)).sqrt();
        let normalized_vector_y = y / (x.powf(2.) + y.powf(2.) + z.powf(2.)).sqrt();
        let normalized_vector_z = z / (x.powf(2.) + y.powf(2.) + z.powf(2.)).sqrt();

        let radial_velocity_vector_x = normalized_vector_x * radial_velocity_si;
        let radial_velocity_vector_y = normalized_vector_y * radial_velocity_si;
        let radial_velocity_vector_z = normalized_vector_z * radial_velocity_si;

        let x_v = radial_velocity_vector_x + proper_motion_vector_x;
        let y_v = radial_velocity_vector_y + proper_motion_vector_y;
        let z_v = radial_velocity_vector_z + proper_motion_vector_z;

        DVec3::new(x_v, y_v, z_v)
    }

    /// Velocity of the companion star in a twobody system with no rotation applied.
    /// a is semi major-axis in au, e is eccentricity, period is in years and t_p is time since periastron in years.
    /// Output is a 2-dimensional vector with x and y in that order all in meters/second. We only need a 2-dimensional vector here
    /// due to the fact that everything is on a plane in 2D.
    pub fn companion_velocity(a: f64, e: f64, period: f64, t_p: f64) -> DVec2 {
        //Prep Values
        let mu = standard_gravitational_parameter(a, e);
        let p = semi_parameter(a, e);
        let v = true_anomaly(e, period, t_p);

        //Velocity of Companion in ellipse base
        let x_v = (0. - ((mu / p).sqrt())) * (v.sin());
        let y_v = ((mu / p).sqrt()) * (e + (v.cos()));

        DVec2::new(x_v, y_v)
    }

    /// Velocity of the companion star in a twobody system with rotation relative to the earth/sun plane applied.
    /// a is semi major-axis in au, e is eccentricity, period is in years, t_p is time since periastron in years,
    /// lotn is Longitude of the node (Omega) in degrees, aop is Argument of periastron (omega) in degrees and finally i is the Inclination in degrees.
    /// Output is a 3-dimensional vector with x, y and z in that order all in meters/second.
    pub fn companion_relative_velocity(
        a: f64,
        e: f64,
        period: f64,
        t_p: f64,
        lotn: f64,
        aop: f64,
        i: f64,
    ) -> DVec3 {
        //Prep Values
        let mu = standard_gravitational_parameter(a, e);
        let p = semi_parameter(a, e);
        let v = true_anomaly(e, period, t_p);

        //Velocity of Companion in ellipse base
        let x_v = (0. - ((mu / p).sqrt())) * (v.sin());
        let y_v = ((mu / p).sqrt()) * (e + (v.cos()));

        //Ellipse base
        let euler_angle_transformations = euler_angle_transformations(lotn, aop, i).to_cols_array();
        let x1 = euler_angle_transformations[0];
        let x2 = euler_angle_transformations[1];
        let x3 = euler_angle_transformations[2];

        let y1 = euler_angle_transformations[3];
        let y2 = euler_angle_transformations[4];
        let y3 = euler_angle_transformations[5];

        //Velocity in original base
        let companion_velocity_x = (x1 * x_v) + (y1 * y_v);
        let companion_velocity_y = (x2 * x_v) + (y2 * y_v);
        let companion_velocity_z = (x3 * x_v) + (y3 * y_v);

        DVec3::new(
            companion_velocity_x,
            companion_velocity_y,
            companion_velocity_z,
        )
    }

    /// Just the companion velocity but as a value and not coordinates.
    pub fn companion_velocity_value(a: f64, e: f64, period: f64, t_p: f64) -> f64 {
        let mu = standard_gravitational_parameter(a, e);
        let epsilon = specific_mechanical_energy(a, e);
        let r = radius(a, e, period, t_p);

        (2. * ((mu / r) + epsilon)).sqrt()
    }
}

/// Set of common functions used by `spv-rs` exposed if you want to used them for your own calculations.
pub mod common {
    use super::coordinate_transforms::euler_angle_transformations;
    use super::position::companion_relative_position;
    use super::velocity::companion_relative_velocity;
    use glam::f64::DVec3;

    /// Takes a in as (arcseconds) and parllax in mas (milliarcsecond) and outputs a in au.
    pub fn a_to_au(parallax: f64, a: f64) -> f64 {
        let distance_parsec = 1. / (parallax / 1000.);
        a * distance_parsec * 149597870.7
    }

    /// Calculates total declination in degrees with declination_degree, declination_min and declination_s in degrees, minutes and seconds respectively.
    pub fn declination_total(
        declination_degree: f64,
        declination_min: f64,
        declination_s: f64,
    ) -> f64 {
        declination_degree + (declination_min / 60.) + (declination_s / 3600.)
    }

    /// Calculates total right ascension in degrees with right_ascension_h, right_ascension_min and right_ascension_s in hours, minutes and seconds respectively.
    pub fn right_ascension_total(
        right_ascension_h: f64,
        right_ascension_min: f64,
        right_ascension_s: f64,
    ) -> f64 {
        (right_ascension_h * 15.)
            + (right_ascension_min * (1. / 4.))
            + (right_ascension_s * (1. / 240.))
    }

    /// Calculates r min or the minimum distance between the primary and companion boides in a twobody system also known as perigee
    /// (suffix may change depending on what object it reffers to).
    /// Output is just the x coordinate in the ellipses plane.
    pub fn perigee(a: f64, e: f64) -> f64 {
        a * (1. - e)
    }

    /// Calculates r max or the maximum distance between the primary and companion boides in a twobody system also known as apogee
    /// (suffix may change depending on what object it reffers to).
    /// Output is just the x coordinate in the ellipses plane.
    pub fn apogee(a: f64, e: f64) -> f64 {
        a * (1. + e)
    }

    /// Calculates r min or the minimum distance between the primary and companion boides in a twobody system also known as perigee
    /// (suffix may change depending on what object it reffers to).
    /// Output is 3-dimensional vector that represents the coordinates for perigee rotated to be relative to the earth/sun plane.
    pub fn relative_perigee(a: f64, e: f64, lotn: f64, aop: f64, i: f64) -> DVec3 {
        let x = a * (1. - e);

        let euler_angle_transformations = euler_angle_transformations(lotn, aop, i).to_cols_array();
        let x1 = euler_angle_transformations[0];
        let x2 = euler_angle_transformations[1];
        let x3 = euler_angle_transformations[2];

        DVec3::new(x * x1, x * x2, x * x3)
    }

    /// Calculates r max or the maximum distance between the primary and companion boides in a twobody system also known as apogee
    /// (suffix may change depending on what object it reffers to).
    /// Output is 3-dimensional vector that represents the coordinates for apogee rotated to be relative to the earth/sun plane.
    pub fn relative_apogee(a: f64, e: f64, lotn: f64, aop: f64, i: f64) -> DVec3 {
        let x = a * (1. + e);

        let euler_angle_transformations = euler_angle_transformations(lotn, aop, i).to_cols_array();
        let x1 = euler_angle_transformations[0];
        let x2 = euler_angle_transformations[1];
        let x3 = euler_angle_transformations[2];

        DVec3::new(x * x1, x * x2, x * x3)
    }

    /// Calculates the eccentric anomaly in degrees
    pub fn eccentric_anomaly(e: f64, period: f64, t_p: f64) -> f64 {
        //SI units
        let p_si = period * 31557600.;
        let t_p_si = t_p * 31557600.;

        //Defining angles
        let mean_anom = std::f64::consts::PI * 2. * t_p_si / p_si;
        let mut ecc_anom = mean_anom;
        for _i in (0..=20).step_by(1) {
            ecc_anom = mean_anom + (e * ecc_anom.sin());
        }

        ecc_anom
    }

    /// Calculates the true anomaly in degrees
    pub fn true_anomaly(e: f64, period: f64, t_p: f64) -> f64 {
        //SI units
        let p_si = period * 31557600.;
        let t_p_si = t_p * 31557600.;

        //Defining angles
        let mean_anom = std::f64::consts::PI * 2. * t_p_si / p_si;
        let mut ecc_anom = mean_anom;
        for _i in (0..=20).step_by(1) {
            ecc_anom = mean_anom + (e * ecc_anom.sin());
        }

        2. * (((1. + e) / (1. - e)).sqrt() * (ecc_anom * 0.5).tan()).atan()
    }

    /// Calculates the flight path angle for the companion body in degrees
    pub fn flight_path_angle(e: f64, period: f64, t_p: f64) -> f64 {
        //SI units
        let p_si = period * 31557600.;
        let t_p_si = t_p * 31557600.;

        //Defining angles
        let mean_anom = std::f64::consts::PI * 2. * t_p_si / p_si;
        let mut ecc_anom = mean_anom;
        for _i in (0..=20).step_by(1) {
            ecc_anom = mean_anom + (e * ecc_anom.sin());
        }

        ((e * ecc_anom.sin()) / ((1. - ((e.powf(2.)) * (ecc_anom.cos().powf(2.)))).sqrt()))
            .asin()
            .to_degrees()
    }

    /// Calculates the semi parameter for a twobody system
    pub fn semi_parameter(a: f64, e: f64) -> f64 {
        let a_si = a * 1000.;
        let b_si = semi_minor_axis(a, e);

        (b_si.powf(2.)) / a_si
    }

    /// Calculates the semi minor axis for a twobody system
    pub fn semi_minor_axis(a: f64, e: f64) -> f64 {
        let a_si = a * 1000.;

        a_si * ((1. - e.powf(2.)).sqrt())
    }

    /// Calculates the total radius for a twobody system
    pub fn radius(a: f64, e: f64, period: f64, t_p: f64) -> f64 {
        let nu = true_anomaly(e, period, t_p);
        let p = semi_parameter(a, e);

        p / (1. + (e * nu.cos()))
    }

    /// Calculates the specific angular momentum value
    pub fn specific_angular_momentum_value(a: f64, e: f64) -> f64 {
        let p = semi_parameter(a, e);
        let mu = standard_gravitational_parameter(a, e);

        (mu * p).sqrt()
    }

    /// Calculates the specific angular momentum coordinates
    pub fn specific_angular_momentum_coordinates(
        a: f64,
        e: f64,
        period: f64,
        t_p: f64,
        lotn: f64,
        aop: f64,
        i: f64,
    ) -> DVec3 {
        let r = companion_relative_position(a, e, period, t_p, lotn, aop, i);
        let v = companion_relative_velocity(a, e, period, t_p, lotn, aop, i);

        DVec3::cross(r, v)
    }

    /// Calculates the stadard gravitational parameter
    pub fn standard_gravitational_parameter(a: f64, e: f64) -> f64 {
        let a_si = a * 1000.;
        let p_si = semi_parameter(a, e);

        ((a_si.powf(3.)) * 4. * (std::f64::consts::PI.powf(2.))) / (p_si.powf(2.))
    }

    /// Specific mechanical energy (used by other equation but exposed here if you need it)
    pub fn specific_mechanical_energy(a: f64, e: f64) -> f64 {
        let mu = standard_gravitational_parameter(a, e);

        0. - (mu / (2. * a))
    }

    /// If you dind't have the period already
    pub fn period(a: f64, e: f64) -> f64 {
        let mu = standard_gravitational_parameter(a, e);

        2. * std::f64::consts::PI * (((a.powf(3.)) / mu).sqrt())
    }

    /// If you for some reason had these parameters and not a then here ya go
    pub fn semi_major_axis(
        standard_gravitational_parameter: f64,
        specific_mechanical_energy: f64,
    ) -> f64 {
        0. - (standard_gravitational_parameter / (2. * specific_mechanical_energy))
    }

    /// Mean motion or n
    pub fn mean_motion(a: f64, e: f64) -> f64 {
        let mu = standard_gravitational_parameter(a, e);

        (mu / (a.powf(3.))).sqrt()
    }

    /// If you for some reason had these parameters and not e then here ya go.
    pub fn eccentricity(
        standard_gravitational_parameter: f64,
        specific_mechanical_energy: f64,
        specific_angular_momentum_value: f64,
    ) -> f64 {
        (1. - ((2. * specific_mechanical_energy * (specific_angular_momentum_value.powf(2.)))
            / (standard_gravitational_parameter.powf(2.))))
        .sqrt()
    }

    /// Distance between one foci and the center of the ellipse.
    pub fn linear_eccentricity(a: f64, e: f64) -> f64 {
        a * e
    }

    /// Flattening is another way to defining eccentricity for an ellipse.
    pub fn flattening(a: f64, e: f64) -> f64 {
        let b = semi_minor_axis(a, e);

        (a - b) / a
    }
}

/// Transform fucntions used by `spv-rs` but exposed her if you want to use them yourself.
pub mod coordinate_transforms {
    use glam::f64::{DMat3, DVec3};

    /// Method for getting base manipulation matrix that is used to rotate the companion star in a twobody system
    /// relative to the earth/sun plane.
    /// lotn is Longitude of the node (Omega) in degrees, aop is Argument of periastron (omega) in degrees and finally i is the Inclination in degrees.
    /// Output is a 3-dimensional matrix with x1, x2 and x3 in the first collum, y1, y2 and y3 in the second collum and z1, z2 and z3 in the third collum.
    pub fn euler_angle_transformations(lotn: f64, aop: f64, i: f64) -> DMat3 {
        //In rad
        let lotn_rad = lotn.to_radians();
        let aop_rad = aop.to_radians();
        let i_rad = i.to_radians();

        //Ellipse base
        let x1 = (lotn_rad.cos() * aop_rad.cos()) - (lotn_rad.sin() * i_rad.cos() * aop_rad.sin());
        let x2 = (lotn_rad.sin() * aop_rad.cos()) + (lotn_rad.cos() * i_rad.cos() * aop_rad.sin());
        let x3 = i_rad.sin() * aop_rad.sin();

        let y1 = ((0. - lotn_rad.cos()) * aop_rad.sin())
            - (lotn_rad.sin() * i_rad.cos() * aop_rad.cos());
        let y2 = ((0. - lotn_rad.sin()) * aop_rad.sin())
            + (lotn_rad.cos() * i_rad.cos() * aop_rad.cos());
        let y3 = i_rad.sin() * aop_rad.cos();

        let z1 = i_rad.sin() * lotn_rad.sin();
        let z2 = (0. - i_rad.sin()) * lotn_rad.cos();
        let z3 = i_rad.cos();

        DMat3::from_cols(
            DVec3::new(x1, x2, x3),
            DVec3::new(y1, y2, y3),
            DVec3::new(z1, z2, z3),
        )
    }
}

/// Basic csv parsing for extracting real world data or any old data table you want to parse really.
/// To get a csv if you got some other format from something like [Vizier](https://vizier.cds.unistra.fr/viz-bin/VizieR)
/// I would recomend a tool like [Topcat](http://www.star.bris.ac.uk/~mbt/topcat/).
pub mod input_data {
    use csv::{ReaderBuilder, StringRecord, Terminator};
    use serde::Deserialize;
    use std::error::Error;

    /// General usecase parsing function for csv files, no specific structure required.
    pub fn parse_csv(filename: &str) -> Result<std::vec::Vec<StringRecord>, Box<dyn Error>> {
        let mut vec = vec![];
        let mut rdr = ReaderBuilder::new()
            .delimiter(b',')
            .terminator(Terminator::Any(b'\n'))
            .has_headers(false)
            .from_path(filename)?;
        for result in rdr.records().flatten() {
            let record = result;
            vec.push(record);
        }
        Ok(vec)
    }

    /// Struct defining a set of collumn variables and types for cav parsing with specific input structure.
    #[derive(Debug, Deserialize)]
    #[serde(rename_all = "PascalCase")]
    pub struct Collums {
        /// Right ascension in epoch J2000.
        pub ra_j2000: f32,
        /// Declination in epoch J2000.
        pub dec_j2000: f32,
        /// Hipparcos catalogue number for the body.
        pub hip: u32,
        /// Common name for the body.
        pub name: String,
        /// Right ascension part of the proper motion in epoch J2000.
        pub pm_ra_j2000: f32,
        /// Declination part of the proper motion in epoch J2000.
        pub pm_dec_j2000: f32,
        /// Parallax in epoch J2000
        pub plx_j2000: f32,
        /// Radial velocity in epoch J2000
        pub rv_j2000: f32,
        /// Visual magnitude in epoch J2000
        pub vmag_j2000: f32,
    }

    /// csv parsing with deserializsation using specific collum layout found in [Collums]
    pub fn parse_csv_deserialize(filename: &str) -> Result<std::vec::Vec<Collums>, Box<dyn Error>> {
        let mut vec = vec![];
        let mut rdr = ReaderBuilder::new()
            .delimiter(b',')
            .terminator(Terminator::Any(b'\n'))
            .has_headers(false)
            .from_path(filename)?;
        for result in rdr.deserialize() {
            let record: Collums = result?;
            vec.push(record);
        }
        Ok(vec)
    }
}

// WIP
/*
pub fn above(
    radius_primary: f64,
    observers_longitude_primary: f64,
    observers_latitude_primary: f64,
    obliquity_of_the_ecliptic_primary: f64,
    rotation_rate_primary: f64,
    lotn_primary: f64,
    aop_primary: f64,
    i_primary: f64,
    distance: f64,
    a_companion: f64,
    e_companion: f64,
    period_companion: f64,
    t_p_companion: f64,
    lotn_companion: f64,
    aop_companion: f64,
    i_companion: f64,

) {

    let observer_declination =  ((observers_latitude_primary.sin() * obliquity_of_the_ecliptic_primary.cos()) + (observers_latitude_primary.cos() * obliquity_of_the_ecliptic_primary.sin() * observers_longitude_primary.sin())).asin();
    let observer_right_ascension = ((observers_latitude_primary.cos() * observers_longitude_primary.cos()) / observer_declination.cos()).acos();

    let position_surface = position_surface(radius_primary, observer_right_ascension, observer_declination);

    let primary_rotation = euler_angle_transformations(lotn_primary, aop_primary, i_primary);

    let companion_rotation = euler_angle_transformations(lotn_companion, aop_companion, i_companion);

    let new_companion_rotation = companion_rotation - primary_rotation;

    let companion_position = companion_relative_position(a_companion, e_companion, period_companion, t_p_companion, lotn_companion, aop_companion, i_companion);

    let primary_velocity = (2. * std::f64::consts::PI * radius_primary) / rotation_rate_primary;
}
*/