1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use std::cell::UnsafeCell;
use std::io::{self, Read, Write};
use std::mem;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

struct SpscBuffer {
    buf: UnsafeCell<Box<[u8]>>,
    len: AtomicUsize,
}

impl SpscBuffer {
    fn new(size: usize) -> Self {
        Self {
            buf: UnsafeCell::new(vec![0; size].into_boxed_slice()),
            len: AtomicUsize::new(0),
        }
    }

    fn len(&self) -> usize {
        self.len.load(Ordering::SeqCst)
    }

    fn capacity(&self) -> usize {
        unsafe { &*self.buf.get() }.len()
    }

    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn is_full(&self) -> bool {
        self.len() == self.capacity()
    }
}

/// Consumer of the ringbuffer.
pub struct SpscBufferReader {
    start: usize,
    buffer: Arc<SpscBuffer>,
}

impl SpscBufferReader {
    /// Get length of contents currently in the buffer
    pub fn len(&self) -> usize {
        self.buffer.len()
    }

    /// Get total capacity of the buffer
    pub fn capacity(&self) -> usize {
        self.buffer.capacity()
    }

    /// Check whether the buffer is currently empty
    pub fn is_empty(&self) -> bool {
        self.buffer.is_empty()
    }

    /// Check whether the buffer is currently empty
    pub fn is_full(&self) -> bool {
        self.buffer.is_full()
    }

    /// Read data from the buffer. Returns number of bytes read.
    pub fn read_to_slice(&mut self, buf: &mut [u8]) -> usize {
        use std::cmp::min;

        let ringbuf: &mut Box<[u8]> = unsafe { mem::transmute(self.buffer.buf.get()) };

        let ringbuf_capacity = ringbuf.len();
        let ringbuf_len = self.buffer.len.load(Ordering::SeqCst);

        // Max number of bytes we might read
        let max_read_size = min(buf.len(), ringbuf_len);
        let contents_until_end = ringbuf_capacity - self.start;
        let read_size = min(max_read_size, contents_until_end);

        buf[..read_size].copy_from_slice(&ringbuf[self.start..self.start + read_size]);
        self.start = (self.start + read_size) % ringbuf_capacity;
        self.buffer.len.fetch_sub(read_size, Ordering::SeqCst);

        read_size
    }
}

impl Read for SpscBufferReader {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        Ok(self.read_to_slice(buf))
    }
}

unsafe impl Sync for SpscBufferReader {}
unsafe impl Send for SpscBufferReader {}

/// Producer for the ringbuffer
pub struct SpscBufferWriter {
    end: usize,
    buffer: Arc<SpscBuffer>,
}

impl SpscBufferWriter {
    /// Get length of contents currently in the buffer
    pub fn len(&self) -> usize {
        self.buffer.len()
    }

    /// Get total capacity of the buffer
    pub fn capacity(&self) -> usize {
        self.buffer.capacity()
    }

    /// Check whether the buffer is currently empty
    pub fn is_empty(&self) -> bool {
        self.buffer.is_empty()
    }

    /// Check whether the buffer is currently empty
    pub fn is_full(&self) -> bool {
        self.buffer.is_full()
    }

    /// Write data to the buffer. Returns number of bytes written.
    pub fn write_from_slice(&mut self, buf: &[u8]) -> usize {
        use std::cmp::min;

        let ringbuf: &mut Box<[u8]> = unsafe { mem::transmute(self.buffer.buf.get()) };

        let ringbuf_capacity = ringbuf.len();
        let ringbuf_len = self.buffer.len.load(Ordering::SeqCst);

        // Max number of bytes we might read
        let max_write_size = min(buf.len(), ringbuf_capacity - ringbuf_len);
        let space_until_end = ringbuf_capacity - self.end;
        let write_size = min(max_write_size, space_until_end);

        ringbuf[self.end..self.end + write_size].copy_from_slice(&buf[..write_size]);
        self.end = (self.end + write_size) % ringbuf_capacity;
        self.buffer.len.fetch_add(write_size, Ordering::SeqCst);

        write_size
    }
}

unsafe impl Sync for SpscBufferWriter {}
unsafe impl Send for SpscBufferWriter {}

impl Write for SpscBufferWriter {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        Ok(self.write_from_slice(buf))
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

/// Create a new SPSC buffer pair.
///
/// The producer and consumer can safely be transferred between threads; the
/// expected use case is that one thread will be writing and one will be reading.
///
/// The underlying buffer's size is synchronised using an atomic. The producer
/// and consumer have methods to query the size and the capacity, which is
/// guaranteed to be consistent between threads but may not be sufficient to
/// prevent races depending on what you are trying to achieve.
///
/// See the mio-anonymous-pipes crate for example usage.
pub fn spsc_buffer(size: usize) -> (SpscBufferWriter, SpscBufferReader) {
    let buffer = Arc::new(SpscBuffer::new(size));

    let producer = SpscBufferWriter {
        end: 0,
        buffer: buffer.clone(),
    };
    let consumer = SpscBufferReader { start: 0, buffer };

    (producer, consumer)
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_spsc_buffer() {
        let buf = [1u8; 100];

        let (mut producer, mut consumer) = spsc_buffer(60);

        assert!(producer.is_empty());
        assert!(consumer.is_empty());

        assert_eq!(producer.len(), 0);
        assert_eq!(consumer.len(), 0);

        assert_eq!(producer.capacity(), 60);
        assert_eq!(consumer.capacity(), 60);

        let mut out_buf = [0u8; 100];

        assert_eq!(producer.write_from_slice(&buf), 60);
        assert_eq!(producer.len(), 60);
        assert_eq!(consumer.len(), 60);

        assert_eq!(consumer.read_to_slice(&mut out_buf), 60);
        assert_eq!(producer.len(), 0);
        assert_eq!(consumer.len(), 0);

        assert_eq!(producer.write_from_slice(&buf[60..]), 40);
        assert_eq!(producer.len(), 40);
        assert_eq!(consumer.len(), 40);

        assert_eq!(consumer.read_to_slice(&mut out_buf[60..]), 40);
        assert_eq!(producer.len(), 0);
        assert_eq!(consumer.len(), 0);

        assert_eq!(&buf[..], &out_buf[..]);


    }
}