1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
//! I2C driver for the SPL06-007 pressure and temperature sensor. This sensor
//! is available as a breakout board for the Arduino platform. This driver
//! may also work with the SPL06-001, but this has not been tested.
//!
//! This sensor operates on the I2c address 0x76 and is connected to the
//! I2C bus on the Arduino Uno. Instantiate the Barometer struct with a
//! reference to the I2C bus and call the init() method to initialise the
//! sensor to default values. The sensor will then be ready to read
//! temperature and pressure values.
//!
//! Example usage on an Arduino Uno:
//!
//! ```rust
//! #![no_std]
//! #![no_main]
//!
//! use arduino_hal::prelude::*;
//! use panic_halt as _;
//!
//! use spl06_007::Barometer;
//!
//! #[arduino_hal::entry]
//! fn main() -> ! {
//! let dp = arduino_hal::Peripherals::take().expect("Failed to take peripherals");
//! let pins = arduino_hal::pins!(dp);
//! let mut serial = arduino_hal::default_serial!(dp, pins, 57600);
//!
//! let mut i2c = arduino_hal::I2c::new(
//! dp.TWI,
//! pins.a4.into_pull_up_input(),
//! pins.a5.into_pull_up_input(),
//! 50000,
//! );
//!
//! let mut barometer = Barometer::new(&mut i2c).expect("Failed to instantiate barometer");
//! barometer.init().expect("Failed to initialise barometer");
//!
//! loop {
//! ufmt::uwriteln!(&mut serial, "T: {:?}", barometer.get_temperature().unwrap() as u16).void_unwrap();
//! ufmt::uwriteln!(&mut serial, "P: {:?}", barometer.get_pressure().unwrap() as u16).void_unwrap();
//! ufmt::uwriteln!(&mut serial, "A: {:?}", barometer.altitude(1020.0).unwrap() as u16).void_unwrap();
//! }
//! }
//! ```
//!
//! It is necessary to call `init` before any other methods are called. This method will set some default values for the sensor and is suitable for most use cases. Alternatively you can set the mode, sample rate, and oversampling values manually:
//!
//! ```rust
//! barometer.set_pressure_config(SampleRate::Single, SampleRate::Eight);
//! barometer.set_temperature_config(SampleRate::Single, SampleRate::Eight);
//! barometer.set_mode(Mode::ContinuousPressureTemperature);
//! ```
//!
//! This is useful if you want to change the sample rate or oversampling values, such as for more rapid updates. It is also possible to set the mode to `Mode::Standby` to reduce power consumption. Other modes, including measuring only when polled, are not well supported at this time.
//!
//!
#![no_std]
extern crate embedded_hal as hal;
extern crate libm;
use embedded_hal::blocking::i2c::{Read, Write, WriteRead};
use libm::powf;
const ADDR: u8 = 0x76;
pub enum Mode {
Standby = 0b000,
Pressure = 0b001,
Temperature = 0b010,
ContinuousPressure = 0b101,
ContinuousTemperature = 0b110,
ContinuousPressureTemperature = 0b111,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub enum SampleRate {
Single = 0b000,
Two = 0b001,
Four = 0b010,
Eight = 0b011,
// Sixteen = 0b100,
// ThirtyTwo = 0b101,
// SixtyFour = 0b110,
// OneTwentyEight = 0b111,
} // Sample rates > 8 currently broken due to bitshift
// pub enum FifoStatus {
// Empty = 0b01,
// Partial = 0b00,
// Full = 0b10,
// }
pub struct Barometer<'a, I2C>
where
I2C: Read + Write + WriteRead,
{
i2c: &'a mut I2C,
calibration_data: CalibrationData,
}
impl<'a, I2C, E> Barometer<'a, I2C>
where
I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
{
pub fn new(i2c: &'a mut I2C) -> Result<Self, E> {
let mut barometer = Barometer {
i2c,
calibration_data: CalibrationData::default(),
};
barometer.set_mode(Mode::Standby)?;
barometer.write(&[0x09, 0x00])?; // disable FIFO
while !barometer.calibration_data_is_available()? {}
barometer.calibration_data = barometer.get_calibration_data()?;
Ok(barometer)
}
/// Initialise the sensor to default values:
/// - Pressure sample rate: 1
/// - Pressure oversample rate: 8
/// - Temperature oversample rate: 1
/// - Temperature sample rate: 8
/// - Mode: Continuous pressure and temperature
/// - FIFO disabled
/// - Interrupts disabled
pub fn init(&mut self) -> Result<(), E> {
self.set_pressure_config(SampleRate::Single, SampleRate::Eight)?;
self.set_temperature_config(SampleRate::Single, SampleRate::Eight)?;
self.set_mode(Mode::ContinuousPressureTemperature)?;
self.write(&[0x09, 0x00])?; // disable FIFO
Ok(())
}
/// First four bits: Product ID
/// Last four bits: Revision ID
pub fn sensor_id(&mut self) -> Result<u8, E> {
self.read8(0x0D)
}
/// Read and calculate the temperature in degrees celsius
pub fn get_temperature(&mut self) -> Result<f32, E> {
let calib = self.get_calibration_data()?;
let temp = calib.c1 as f32 * self.traw_sc()?;
let offset = calib.c0 as f32 / 2.0;
Ok(temp + offset)
}
/// Read and calculate the pressure in millibars
pub fn get_pressure(&mut self) -> Result<f32, E> {
let cal = self.calibration_data;
let traw_sc = self.traw_sc()?;
let praw_sc = self.praw_sc()?;
let pcomp = cal.c00 as f32
+ praw_sc * (cal.c10 as f32 + praw_sc * (cal.c20 as f32 + praw_sc * cal.c30 as f32))
+ traw_sc * cal.c01 as f32
+ traw_sc * praw_sc * (cal.c11 as f32 + praw_sc * cal.c21 as f32);
Ok(pcomp / 100.0)
}
/// Read and calculate the altitude in metres
pub fn altitude(&mut self, sea_level_hpa: f32) -> Result<f32, E> {
Ok(44330.0 * (1.0 - powf(self.get_pressure()? / sea_level_hpa, 0.1903)))
}
fn raw_pressure(&mut self) -> Result<i32, E> {
self.read24(0x00)
}
fn raw_temperature(&mut self) -> Result<i32, E> {
self.read24(0x03)
}
fn traw_sc(&mut self) -> Result<f32, E> {
let mut temp = self.raw_temperature()?;
let oversample_rate = self.temperature_oversample_rate()?;
if oversample_rate > SampleRate::Eight {
temp <<= 1;
}
Ok(temp as f32 / oversample_rate.scale_factor())
}
fn praw_sc(&mut self) -> Result<f32, E> {
let mut pressure = self.raw_pressure()?;
let oversample_rate = self.pressure_oversample_rate()?;
if oversample_rate > SampleRate::Eight {
pressure <<= 1;
}
Ok(pressure as f32 / oversample_rate.scale_factor())
}
fn pressure_oversample_rate(&mut self) -> Result<SampleRate, E> {
let byte = self.read8(0x06)?;
Ok(SampleRate::from_u8(byte))
}
fn temperature_oversample_rate(&mut self) -> Result<SampleRate, E> {
let byte = self.read8(0x07)?;
Ok(SampleRate::from_u8(byte))
}
fn calibration_data_is_available(&mut self) -> Result<bool, E> {
Ok((self.read8(0x08)? >> 7) == 1)
}
/// Sensor data might not be available after the sensor is powered on or settings changed.
/// Note that you should use new_data_is_available() for checking if new data is available.
pub fn sensor_data_is_ready(&mut self) -> Result<bool, E> {
Ok(((self.read8(0x08)? >> 6) & 0b1) == 1)
}
/// Returns a tuple of (temperature, pressure), true if new data is available
pub fn new_data_is_available(&mut self) -> Result<(bool, bool), E> {
let byte = self.read8(0x08)?;
Ok((((byte >> 5) & 1) == 1, ((byte >> 4) & 1) == 1))
}
// pub fn fifo_is_enabled(&mut self) -> Result<bool, E> {
// let byte = self.read8(0x09)? >> 1;
// Ok((byte & 1) == 1)
// }
// pub fn fifo_status(&mut self) -> Result<FifoStatus, E> {
// match self.read8(0x0B)? & 0b11 {
// 0b01 => Ok(FifoStatus::Empty),
// 0b00 => Ok(FifoStatus::Partial),
// 0b10 => Ok(FifoStatus::Full),
// _ => unreachable!("Not a valid FIFO status"),
// }
// }
// pub fn set_fifo(&mut self, value: bool) -> Result<(), E> {
// let mut reg = self.read8(0x09)? & 0b11111101;
// reg |= (value as u8) << 1;
// self.write(&[0x09, reg])
// }
// pub fn flush_fifo(&mut self) -> Result<(), E> {
// self.write(&[0x0C, 0x80])
// }
// fn set_pressure_shift(&mut self, value: bool) -> Result<(), E> {
// let mut reg = self.read8(0x0E)? & 0b11111011;
// reg |= (value as u8) << 2;
// self.write(&[0x0E, reg])
// }
// fn set_temp_shift(&mut self, value: bool) -> Result<(), E> {
// let mut reg = self.read8(0x0E)? & 0b11110111;
// reg |= (value as u8) << 3;
// self.write(&[0x0E, reg])
// }
/// Reset the sensor. This will reset all configuration registers to their default values.
/// You will need to reinitialse the sensor after this.
pub fn soft_reset(&mut self) -> Result<(), E> {
self.write(&[0x0C, 0x09])
}
/// The sample rate is the number of measurements available per second.
/// The oversample rate is the number of individual measurements used to calculate the final
/// value for each final measurement. Higher oversample rates will give more accurate results.
///
/// Note that the pressure readings are dependent on temperature readings, so the temperature
/// oversample rate should be equal or higher than the pressure oversample rate.
pub fn set_pressure_config(
&mut self,
sample: SampleRate,
oversample: SampleRate,
) -> Result<(), E> {
let byte = (sample as u8) << 4 | oversample as u8;
// self.set_pressure_shift(oversample > SampleRate::Eight)?;
self.write(&[0x06, byte])
}
/// The sample rate is the number of measurements available per second.
/// The oversample rate is the number of individual measurements used to calculate the final
/// value for each final measurement. Higher oversample rates will give more accurate results.
pub fn set_temperature_config(
&mut self,
sample: SampleRate,
oversample: SampleRate,
) -> Result<(), E> {
let byte = 0x80 | (sample as u8) << 4 | oversample as u8;
// self.set_temp_shift(oversample > SampleRate::Eight)?;
self.write(&[0x07, byte])
}
pub fn set_mode(&mut self, mode: Mode) -> Result<(), E> {
self.write(&[0x08, mode as u8])
}
fn get_calibration_data(&mut self) -> Result<CalibrationData, E> {
let mut data = [0; 2];
self.read(0x10, &mut data)?;
let mut c0 = ((data[0] as u16) << 4) | data[1] as u16 >> 4;
if c0 & (1 << 11) != 0 {
c0 |= 0xF000;
}
// c1
self.read(0x11, &mut data)?;
let mut c1 = (((data[0] & 0xF) as u16) << 8) | data[1] as u16;
if c1 & (1 << 11) != 0 {
c1 |= 0xF000;
}
// c00
let mut data = [0; 3];
self.read(0x13, &mut data)?;
let c00 = if data[0] & 0x80 != 0 { 0xFFF00000 } else { 0 }
| ((data[0] as u32) << 12)
| ((data[1] as u32) << 4)
| ((data[2] as u32) & 0xF0) >> 4;
// c10
self.read(0x15, &mut data)?;
let c10 = if data[0] & 0x8 != 0 { 0xFFF00000 } else { 0 }
| ((data[0] as u32) & 0x0F) << 16
| (data[1] as u32) << 8
| data[2] as u32;
Ok(CalibrationData {
c0: c0 as i16,
c1: c1 as i16,
c00: c00 as i32,
c10: c10 as i32,
c01: self.read16(0x8)? as i32,
c11: self.read16(0x10)? as i32,
c20: self.read16(0x12)? as i32,
c21: self.read16(0x14)? as i32,
c30: self.read16(0x16)? as i32,
})
}
fn write(&mut self, data: &[u8]) -> Result<(), E> {
self.i2c.write(ADDR, data)
}
pub fn read(&mut self, reg: u8, buffer: &mut [u8]) -> Result<(), E> {
self.i2c.write_read(ADDR, &[reg], buffer)
}
fn read8(&mut self, reg: u8) -> Result<u8, E> {
let mut buffer = [0u8];
match self.read(reg, &mut buffer) {
Ok(_) => Ok(buffer[0]),
Err(res) => Err(res),
}
}
fn read16(&mut self, reg: u8) -> Result<i16, E> {
let mut buffer = [0u8; 2];
match self.read(reg, &mut buffer) {
Ok(_) => Ok((((buffer[0] as u16) << 8) | buffer[1] as u16) as i16),
Err(res) => Err(res),
}
}
fn read24(&mut self, reg: u8) -> Result<i32, E> {
let mut buffer = [0; 3];
self.read(reg, &mut buffer)?;
let [msb, lsb, xlsb] = buffer.map(|x| x as u32);
let res: u32 =
if msb & 0x80 != 0 { 0xFF << 24 } else { 0x00 } | (msb << 16) | (lsb << 8) | xlsb;
Ok(res as i32)
}
}
#[derive(Debug, Clone, Copy, Default)]
struct CalibrationData {
c0: i16,
c1: i16,
c00: i32,
c10: i32,
c01: i32,
c11: i32,
c20: i32,
c21: i32,
c30: i32,
}
impl SampleRate {
fn scale_factor(&self) -> f32 {
match self {
Self::Single => 524288.0,
Self::Two => 1572864.0,
Self::Four => 3670016.0,
Self::Eight => 7864320.0,
// Self::Sixteen => 253952.0,
// Self::ThirtyTwo => 516096.0,
// Self::SixtyFour => 1040384.0,
// Self::OneTwentyEight => 2088960.0,
}
}
fn from_u8(value: u8) -> SampleRate {
match value & 0b111 {
0b000 => Self::Single,
0b001 => Self::Two,
0b010 => Self::Four,
0b011 => Self::Eight,
// 0b100 => Self::Sixteen,
// 0b101 => Self::ThirtyTwo,
// 0b110 => Self::SixtyFour,
// 0b111 => Self::OneTwentyEight,
_ => unreachable!(),
}
}
}