1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
use crate::error::{SpirvCrossError, ToContextError};
use crate::handle::Handle;
use crate::reflect::try_valid_slice;
use crate::string::ContextStr;
use crate::{error, spirv};
use crate::{Compiler, ContextRoot};
use core::slice;
use spirv_cross_sys as sys;
use spirv_cross_sys::spvc_entry_point;
use std::ffi::c_char;
use std::mem::MaybeUninit;
use std::ptr;
/// Iterator for declared extensions, created by [`Compiler::declared_extensions`].
pub struct ExtensionsIter<'a>(slice::Iter<'a, *const c_char>, ContextRoot<'a>);
impl<'a> Iterator for ExtensionsIter<'a> {
type Item = ContextStr<'a>;
fn next(&mut self) -> Option<Self::Item> {
self.0
.next()
.map(|ptr| unsafe { ContextStr::from_ptr(*ptr, self.1.clone()) })
}
}
/// Querying declared properties of the SPIR-V module.
impl<'ctx, T> Compiler<'ctx, T> {
/// Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module.
pub fn declared_capabilities(&self) -> error::Result<&'ctx [spirv::Capability]> {
unsafe {
let mut caps = std::ptr::null();
let mut size = 0;
sys::spvc_compiler_get_declared_capabilities(self.ptr.as_ptr(), &mut caps, &mut size)
.ok(self)?;
const _: () =
assert!(std::mem::size_of::<spirv::Capability>() == std::mem::size_of::<u32>());
try_valid_slice(caps, size)
}
}
/// Gets the list of all SPIR-V extensions which were declared in the SPIR-V module.
pub fn declared_extensions(&self) -> error::Result<ExtensionsIter<'ctx>> {
// SAFETY: 'a is OK to return here
// https://github.com/KhronosGroup/SPIRV-Cross/blob/6a1fb66eef1bdca14acf7d0a51a3f883499d79f0/spirv_cross_c.cpp#L2756
unsafe {
let mut caps = std::ptr::null_mut();
let mut size = 0;
sys::spvc_compiler_get_declared_extensions(self.ptr.as_ptr(), &mut caps, &mut size)
.ok(self)?;
let ptr_slice = slice::from_raw_parts(caps, size);
Ok(ExtensionsIter(ptr_slice.iter(), self.ctx.clone()))
}
}
/// Get the execution model of the module.
pub fn execution_model(&self) -> error::Result<spirv::ExecutionModel> {
unsafe {
let mut exec_model = MaybeUninit::zeroed();
sys::spvc_rs_compiler_get_execution_model_indirect(
self.ptr.as_ptr(),
exec_model.as_mut_ptr(),
);
if exec_model.as_ptr().cast::<i32>().read() == i32::MAX {
Err(SpirvCrossError::InvalidEnum)
} else {
Ok(exec_model.assume_init())
}
}
}
}
/// Proof that [`Compiler::update_active_builtins`] was called.
#[derive(Debug, Copy, Clone)]
pub struct ActiveBuiltinsUpdatedProof(Handle<()>);
/// Querying builtins in the SPIR-V module
impl<T> Compiler<'_, T> {
/// Update active built-ins in the SPIR-V module.
pub fn update_active_builtins(&mut self) -> ActiveBuiltinsUpdatedProof {
unsafe {
sys::spvc_compiler_update_active_builtins(self.ptr.as_ptr());
ActiveBuiltinsUpdatedProof(self.create_handle(()))
}
}
/// Return whether the builtin is used or not.
///
/// Requires [`Compiler::update_active_builtins`] to be called first,
/// proof of which is required to call this function.
pub fn has_active_builtin(
&self,
builtin: spirv::BuiltIn,
storage_class: spirv::StorageClass,
proof: ActiveBuiltinsUpdatedProof,
) -> error::Result<bool> {
if !self.handle_is_valid(&proof.0) {
return Err(SpirvCrossError::InvalidOperation(String::from(
"The provided proof of building active builtins is invalid",
)));
}
unsafe {
Ok(sys::spvc_compiler_has_active_builtin(
self.ptr.as_ptr(),
builtin,
storage_class,
))
}
}
}
/// Iterator type created by [`Compiler::entry_points`].
pub struct EntryPointIter<'a>(
slice::Iter<'a, MaybeUninit<spvc_entry_point>>,
ContextRoot<'a>,
);
/// A SPIR-V entry point.
#[derive(Debug)]
pub struct EntryPoint<'a> {
/// The execution model for the entry point.
pub execution_model: spirv::ExecutionModel,
/// The name of the entry point.
pub name: ContextStr<'a>,
}
impl<'a> Iterator for EntryPointIter<'a> {
type Item = EntryPoint<'a>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next().and_then(|entry| unsafe {
// execution_model is potentially uninit, we need to check.
let exec_model = ptr::addr_of!((*entry.as_ptr()).execution_model);
if exec_model.cast::<i32>().read() == i32::MAX {
if cfg!(debug_assertions) {
panic!("Unexpected SpvExecutionModelMax in valid entry point!")
} else {
return None;
}
}
let entry = entry.assume_init();
let name = ContextStr::from_ptr(entry.name, self.1.clone());
Some(EntryPoint {
name,
execution_model: entry.execution_model,
})
})
}
}
/// Reflection of entry points.
impl<'ctx, T> Compiler<'ctx, T> {
/// All operations work on the current entry point.
///
/// Entry points can be swapped out with [`Compiler::set_entry_point`].
///
/// Entry points should be set right after creating the compiler as some reflection
/// functions traverse the graph from the entry point.
///
/// Resource reflection also depends on the entry point.
/// By default, the current entry point is set to the first `OpEntryPoint` which appears in the SPIR-V module.
//
/// Some shader languages restrict the names that can be given to entry points, and the
/// corresponding backend will automatically rename an entry point name when compiling,
/// if it is illegal.
///
/// For example, the common entry point name `main()` is illegal in MSL, and is renamed to an
/// alternate name by the MSL backend.
///
/// Given the original entry point name contained in the SPIR-V, this function returns
/// the name, as updated by the backend, if called after compilation.
///
/// If the name is not illegal, and has not been renamed this function will simply return the
/// original name.
pub fn entry_points(&self) -> error::Result<EntryPointIter<'ctx>> {
unsafe {
// SAFETY: 'ctx is sound here
// https://github.com/KhronosGroup/SPIRV-Cross/blob/6a1fb66eef1bdca14acf7d0a51a3f883499d79f0/spirv_cross_c.cpp#L2170
let mut entry_points = std::ptr::null();
let mut size = 0;
sys::spvc_compiler_get_entry_points(self.ptr.as_ptr(), &mut entry_points, &mut size)
.ok(self)?;
Ok(EntryPointIter(
slice::from_raw_parts(entry_points.cast(), size).iter(),
self.ctx.clone(),
))
}
}
/// Get the cleansed name of the entry point for the given original name.
pub fn cleansed_entry_point_name<'str>(
&self,
name: impl Into<ContextStr<'str>>,
model: spirv::ExecutionModel,
) -> error::Result<Option<ContextStr<'ctx>>> {
// SAFETY: 'ctx is sound here
// https://github.com/KhronosGroup/SPIRV-Cross/blob/6a1fb66eef1bdca14acf7d0a51a3f883499d79f0/spirv_cross_c.cpp#L2217
let name = name.into();
let name = name.into_cstring_ptr()?;
unsafe {
let name = sys::spvc_compiler_get_cleansed_entry_point_name(
self.ptr.as_ptr(),
name.as_ptr(),
model,
);
if name.is_null() {
return Ok(None);
}
Ok(Some(ContextStr::from_ptr(name, self.ctx.clone())))
}
}
/// Set the current entry point by name.
///
/// All operations work on the current entry point.
///
/// Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point.
/// Resource reflection also depends on the entry point.
///
/// By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module.
///
/// Names for entry points in the SPIR-V module may alias if they belong to different execution models.
/// To disambiguate, we must pass along with the entry point names the execution model.
///
/// ## Shader language restrictions
/// Some shader languages restrict the names that can be given to entry points, and the
/// corresponding backend will automatically rename an entry point name, on compilation if it is illegal.
///
/// For example, the common entry point name `main()` is illegal in MSL, and is renamed to an
/// alternate name by the MSL backend.
pub fn set_entry_point<'str>(
&mut self,
name: impl Into<ContextStr<'str>>,
model: spirv::ExecutionModel,
) -> error::Result<()> {
let name = name.into();
unsafe {
let name = name.into_cstring_ptr()?;
sys::spvc_compiler_set_entry_point(self.ptr.as_ptr(), name.as_ptr(), model).ok(&*self)
}
}
/// Renames an entry point from `from` to `to`.
///
/// If old_name is currently selected as the current entry point, it will continue to be the current entry point,
/// albeit with a new name.
///
/// Values returned from [`Compiler::entry_points`] before this call will be outdated.
pub fn rename_entry_point<'str>(
&mut self,
from: impl Into<ContextStr<'str>>,
to: impl Into<ContextStr<'str>>,
model: spirv::ExecutionModel,
) -> error::Result<()> {
let from = from.into();
let to = to.into();
unsafe {
let from = from.into_cstring_ptr()?;
let to = to.into_cstring_ptr()?;
sys::spvc_compiler_rename_entry_point(
self.ptr.as_ptr(),
from.as_ptr(),
to.as_ptr(),
model,
)
.ok(&*self)
}
}
}
#[cfg(test)]
mod test {
use crate::error::SpirvCrossError;
use crate::Compiler;
use crate::{spirv, targets, Module, SpirvCrossContext};
static BASIC_SPV: &[u8] = include_bytes!("../../basic.spv");
#[test]
pub fn get_entry_points() -> Result<(), SpirvCrossError> {
let spv = SpirvCrossContext::new()?;
let vec = Vec::from(BASIC_SPV);
let words = Module::from_words(bytemuck::cast_slice(&vec));
let mut compiler: Compiler<targets::None> = spv.create_compiler(words)?;
let old_entry_points: Vec<_> = compiler.entry_points()?.collect();
let main = &old_entry_points[0];
eprintln!("{:?}", main);
assert_eq!("main", main.name.as_ref());
compiler.rename_entry_point("main", "new_main", spirv::ExecutionModel::Fragment)?;
let no_name =
compiler.cleansed_entry_point_name("main", spirv::ExecutionModel::Fragment)?;
assert!(no_name.is_none());
assert_eq!("main", main.name.as_ref());
let new_name =
compiler.cleansed_entry_point_name("new_main", spirv::ExecutionModel::Fragment)?;
assert_eq!(Some("new_main"), new_name.as_deref());
Ok(())
}
#[test]
pub fn entry_point_soundness() -> Result<(), SpirvCrossError> {
let spv = SpirvCrossContext::new()?;
let vec = Vec::from(BASIC_SPV);
let words = Module::from_words(bytemuck::cast_slice(&vec));
let mut compiler: Compiler<targets::None> = spv.into_compiler(words)?;
let name = compiler
.cleansed_entry_point_name("main", spirv::ExecutionModel::Fragment)?
.unwrap();
assert_eq!("main", name.as_ref());
drop(compiler);
assert_eq!("main", name.as_ref());
Ok(())
}
#[test]
pub fn capabilities() -> Result<(), SpirvCrossError> {
let spv = SpirvCrossContext::new()?;
let vec = Vec::from(BASIC_SPV);
let words = Module::from_words(bytemuck::cast_slice(&vec));
let compiler: Compiler<targets::None> = spv.create_compiler(words)?;
let resources = compiler.shader_resources()?.all_resources()?;
let ty = compiler.declared_capabilities()?;
assert_eq!([spirv::Capability::Shader], ty);
Ok(())
}
}