spawn_access_control/
model_optimizer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
use crate::ml_metrics::ModelMetrics;
use serde::Serialize;
use std::collections::HashMap;
use rayon::prelude::*;
use rand::Rng;
use smartcore::{
    linalg::basic::matrix::DenseMatrix,
    ensemble::random_forest_classifier::{
        RandomForestClassifier,
        RandomForestClassifierParameters
    },
};

#[derive(Debug, Clone, PartialEq)]
pub enum PerformanceTrend {
    Improving,
    Stable,
    Degrading,
}

#[derive(Debug, Clone, Serialize)]
pub struct ModelParameters {
    pub max_depth: u16,
    pub min_samples_split: usize,
    pub learning_rate: f64,
    pub n_trees: u16,
}

impl Default for ModelParameters {
    fn default() -> Self {
        Self {
            max_depth: 10,
            min_samples_split: 2,
            learning_rate: 0.1,
            n_trees: 100,
        }
    }
}

#[derive(Debug, Serialize)]
pub struct OptimizationStep {
    pub params: ModelParameters,
    pub metrics: ModelMetrics,
    pub timestamp: chrono::DateTime<chrono::Utc>,
}

pub struct ModelOptimizer {
    config: OptimizationConfig,
    #[allow(dead_code)]
    current_best: Option<OptimizationResult>,
    optimization_history: Vec<OptimizationStep>,
}

#[derive(Debug, Clone)]
pub struct GridSearchConfig {
    pub learning_rates: Vec<f64>,
    pub max_depths: Vec<u16>,
    pub min_samples_splits: Vec<usize>,
    pub n_trees: Vec<u16>,
}

#[derive(Debug, Clone)]
pub struct OptimizationConfig {
    pub learning_rate_range: (f64, f64),
    pub max_iterations: usize,
    pub early_stopping_patience: usize,
    pub validation_split: f64,
}

#[derive(Debug, Serialize)]
pub struct OptimizationResult {
    pub best_params: ModelParameters,
    pub performance_improvement: f64,
    pub training_time: std::time::Duration,
    pub optimization_history: Vec<OptimizationStep>,
}

impl ModelOptimizer {
    pub fn new(config: OptimizationConfig) -> Self {
        Self {
            config,
            current_best: None,
            optimization_history: Vec::new(),
        }
    }

    pub fn optimize(&mut self, current_metrics: &ModelMetrics, trend: &PerformanceTrend) -> Option<ModelParameters> {
        match trend {
            PerformanceTrend::Degrading => Some(self.find_optimal_parameters(current_metrics)),
            _ if current_metrics.f1_score < 0.7 => Some(self.find_optimal_parameters(current_metrics)),
            _ => None,
        }
    }

    fn find_optimal_parameters(&mut self, baseline_metrics: &ModelMetrics) -> ModelParameters {
        let mut best_params = self.get_default_parameters();
        let mut best_score = baseline_metrics.f1_score;

        for i in 0..self.config.max_iterations {
            let candidate_params = self.generate_candidate_parameters();
            let performance = self.evaluate_parameters(&candidate_params);

            if performance > best_score {
                best_score = performance;
                best_params = candidate_params;

                self.optimization_history.push(OptimizationStep {
                    params: best_params.clone(),
                    metrics: ModelMetrics {
                        model_id: format!("opt_iter_{}", i),
                        timestamp: chrono::Utc::now(),
                        accuracy: performance,
                        precision: performance, // Simplified for example
                        recall: performance,    // Simplified for example
                        f1_score: performance,
                        confusion_matrix: baseline_metrics.confusion_matrix.clone(),
                        feature_importance: HashMap::new(),
                        training_duration: std::time::Duration::from_secs(0),
                    },
                    timestamp: chrono::Utc::now(),
                });
            }

            // Early stopping check
            if self.should_stop_early() {
                break;
            }
        }

        best_params
    }

    fn get_default_parameters(&self) -> ModelParameters {
        ModelParameters::default()
    }

    fn generate_candidate_parameters(&self) -> ModelParameters {
        let mut rng = rand::thread_rng();
        ModelParameters {
            learning_rate: rng.gen_range(self.config.learning_rate_range.0..self.config.learning_rate_range.1),
            max_depth: rng.gen_range(5..20) as u16,
            min_samples_split: rng.gen_range(2..10),
            n_trees: rng.gen_range(50..200) as u16,
        }
    }

    fn evaluate_parameters(&self, params: &ModelParameters) -> f64 {
        // Simüle edilmiş değerlendirme - gerçek implementasyonda cross-validation yapılmalı
        let base_score = 0.7;
        let lr_factor = (-((params.learning_rate - 0.01).powi(2)) / 0.001).exp();
        let depth_factor = (-((params.max_depth as f64 - 10.0).powi(2)) / 100.0).exp();
        
        base_score * lr_factor * depth_factor
    }

    fn should_stop_early(&self) -> bool {
        if self.optimization_history.len() < self.config.early_stopping_patience {
            return false;
        }

        let recent_scores: Vec<f64> = self.optimization_history
            .iter()
            .rev()
            .take(self.config.early_stopping_patience)
            .map(|step| step.metrics.f1_score)
            .collect();

        let max_score = recent_scores.iter().fold(0.0f64, |a, &b| a.max(b));
        let min_score = recent_scores.iter().fold(f64::INFINITY, |a, &b| a.min(b));

        max_score - min_score < 0.001 // Convergence threshold
    }

    pub fn grid_search(&mut self, validation_data: &ValidationData) -> ModelParameters {
        let grid_config = self.create_grid_config();
        let mut best_params = self.get_default_parameters();
        let mut best_score = 0.0;

        // Paralel grid search
        let results: Vec<(ModelParameters, f64)> = grid_config.parameter_combinations()
            .par_iter()
            .map(|params| {
                let score = self.cross_validate(params, validation_data);
                (params.clone(), score)
            })
            .collect();

        for (params, score) in results {
            if score > best_score {
                best_score = score;
                best_params = params;
            }
        }

        best_params
    }

    fn cross_validate(&self, params: &ModelParameters, data: &ValidationData) -> f64 {
        let k_folds = 5;
        let fold_size = data.features.len() / k_folds;
        let mut scores = Vec::with_capacity(k_folds);

        for k in 0..k_folds {
            let start_idx = k * fold_size;
            let end_idx = start_idx + fold_size;

            // Test ve train setlerini ayır
            let test_features: Vec<Vec<f64>> = data.features[start_idx..end_idx].to_vec();
            let test_labels: Vec<bool> = data.labels[start_idx..end_idx].to_vec();

            let train_features: Vec<Vec<f64>> = data.features.iter()
                .enumerate()
                .filter(|(i, _)| *i < start_idx || *i >= end_idx)
                .map(|(_, f)| f.clone())
                .collect();

            let train_labels: Vec<bool> = data.labels.iter()
                .enumerate()
                .filter(|(i, _)| *i < start_idx || *i >= end_idx)
                .map(|(_, l)| *l)
                .collect();

            let score = self.train_and_evaluate(
                params,
                &train_features,
                &train_labels,
                &test_features,
                &test_labels
            );
            scores.push(score);
        }

        scores.iter().sum::<f64>() / scores.len() as f64
    }

    fn train_and_evaluate(
        &self,
        params: &ModelParameters,
        train_features: &[Vec<f64>],
        train_labels: &[bool],
        test_features: &[Vec<f64>],
        test_labels: &[bool]
    ) -> f64 {
        let x = DenseMatrix::from_2d_vec(&train_features.to_vec());
        let y: Vec<i32> = train_labels.iter().map(|&b| if b { 1 } else { 0 }).collect();

        let model = RandomForestClassifier::fit(
            &x, &y,
            RandomForestClassifierParameters {
                n_trees: params.n_trees as u16,
                max_depth: Some(params.max_depth as u16),
                min_samples_leaf: 5,
                min_samples_split: params.min_samples_split,
                ..Default::default()
            }
        ).unwrap();

        let x_test = DenseMatrix::from_2d_vec(&test_features.to_vec());
        let predictions = model.predict(&x_test).unwrap();
        let predictions: Vec<f64> = predictions.iter().map(|&p| p as f64).collect();

        self.calculate_f1_score(&predictions, test_labels)
    }

    fn calculate_f1_score(&self, predictions: &[f64], actual: &[bool]) -> f64 {
        let mut tp = 0;
        let mut fp = 0;
        let mut fn_count = 0;

        for (pred, act) in predictions.iter().zip(actual.iter()) {
            match (*pred > 0.5, *act) {
                (true, true) => tp += 1,
                (true, false) => fp += 1,
                (false, true) => fn_count += 1,
                _ => {}
            }
        }

        let precision = if tp + fp == 0 { 0.0 } else { tp as f64 / (tp + fp) as f64 };
        let recall = if tp + fn_count == 0 { 0.0 } else { tp as f64 / (tp + fn_count) as f64 };

        if precision + recall == 0.0 {
            0.0
        } else {
            2.0 * (precision * recall) / (precision + recall)
        }
    }

    fn create_grid_config(&self) -> GridSearchConfig {
        GridSearchConfig {
            learning_rates: vec![0.01, 0.1, 0.5],
            max_depths: vec![5, 10, 15],
            min_samples_splits: vec![2, 5, 10],
            n_trees: vec![50, 100, 200],
        }
    }
}

impl GridSearchConfig {
    pub fn parameter_combinations(&self) -> Vec<ModelParameters> {
        let mut combinations = Vec::new();

        for &lr in &self.learning_rates {
            for &md in &self.max_depths {
                for &ms in &self.min_samples_splits {
                    for &nt in &self.n_trees {
                        combinations.push(ModelParameters {
                            learning_rate: lr,
                            max_depth: md,
                            min_samples_split: ms,
                            n_trees: nt,
                        });
                    }
                }
            }
        }

        combinations
    }
}

#[derive(Debug)]
pub struct ValidationData {
    pub features: Vec<Vec<f64>>,
    pub labels: Vec<bool>,
}