Expand description
Kernel implementations for SparseIR
This module provides kernel implementations for analytical continuation in quantum many-body physics. The kernels are used in Fredholm integral equations of the first kind.
u(x) = integral of K(x, y) v(y) dy
where x ∈ [xmin, xmax] and y ∈ [ymin, ymax].
In general, the kernel is applied to a scaled spectral function rho’(y) as:
integral of K(x, y) rho’(y) dy,
where ρ’(y) = w(y) ρ(y). The weight function w(y) transforms the original spectral function ρ(y) into the scaled version ρ’(y) used in the integral equation.
Structs§
- Logistic
Kernel - Logistic kernel for fermionic analytical continuation
- LogisticSVE
Hints - SVE hints for LogisticKernel
- Regularized
Bose Kernel - Regularized bosonic analytical continuation kernel
- Regularized
BoseSVE Hints - SVE hints for RegularizedBoseKernel
Enums§
Traits§
- Abstract
Kernel - Trait for general kernels (both centrosymmetric and non-centrosymmetric)
- Centrosymm
Kernel - Trait for centrosymmetric kernels
- Kernel
Properties - Trait for kernel type properties (static characteristics)
- SVEHints
- Trait for SVE (Singular Value Expansion) hints