Module kernel

Module kernel 

Source
Expand description

Kernel implementations for SparseIR

This module provides kernel implementations for analytical continuation in quantum many-body physics. The kernels are used in Fredholm integral equations of the first kind.

u(x) = integral of K(x, y) v(y) dy

where x ∈ [xmin, xmax] and y ∈ [ymin, ymax].

In general, the kernel is applied to a scaled spectral function rho’(y) as:

integral of K(x, y) rho’(y) dy,

where ρ’(y) = w(y) ρ(y). The weight function w(y) transforms the original spectral function ρ(y) into the scaled version ρ’(y) used in the integral equation.

Structs§

LogisticKernel
Logistic kernel for fermionic analytical continuation
LogisticSVEHints
SVE hints for LogisticKernel
RegularizedBoseKernel
Regularized bosonic analytical continuation kernel
RegularizedBoseSVEHints
SVE hints for RegularizedBoseKernel

Enums§

SymmetryType

Traits§

AbstractKernel
Trait for general kernels (both centrosymmetric and non-centrosymmetric)
CentrosymmKernel
Trait for centrosymmetric kernels
KernelProperties
Trait for kernel type properties (static characteristics)
SVEHints
Trait for SVE (Singular Value Expansion) hints

Functions§

compute_logistic_kernel