1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! Spark Connection Client for Rust
//!
//! Currently, the Spark Connect client for Rust is **highly experimental** and **should
//! not be used in any production setting**. This is currently a "proof of concept" to identify the methods
//! of interacting with Spark cluster from rust.
//!
//! # Usage
//!
//! Create a Spark Session and create a DataFrame from a SQL statement:
//!
//! ```rust
//! use spark_connect_rs::{SparkSession, SparkSessionBuilder};
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//!
//!     let spark: SparkSession = SparkSessionBuilder::remote("sc://127.0.0.1:15002/;user_id=example_rs")
//!         .build()
//!         .await?;
//!
//!     let mut df = spark.sql("SELECT * FROM json.`/opt/spark/examples/src/main/resources/employees.json`").await?;
//!
//!     df.filter("salary > 3000").show(Some(5), None, None).await?;
//!
//!     Ok(())
//! };
//!```
//!
//! Create a Spark Session, create a DataFrame from a CSV file, apply function transformations, and write the results:
//!
//! ```rust
//! use spark_connect_rs::{SparkSession, SparkSessionBuilder};
//!
//! use spark_connect_rs::functions as F;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//!
//!     let spark: SparkSession = SparkSessionBuilder::remote("sc://127.0.0.1:15002/;user_id=example_rs")
//!         .build()
//!         .await?;
//!
//!     let paths = vec!["/opt/spark/examples/src/main/resources/people.csv".to_string()];
//!
//!     let mut df = spark
//!         .read()
//!         .format("csv")
//!         .option("header", "True")
//!         .option("delimiter", ";")
//!         .load(paths);
//!
//!     let mut df = df
//!         .filter("age > 30")
//!         .select(vec![
//!             F::col("name"),
//!             F::col("age").cast("int")
//!         ]);
//!
//!     df.write()
//!       .format("csv")
//!       .option("header", "true")
//!       .save("/opt/spark/examples/src/main/rust/people/")
//!       .await?;
//!
//!     Ok(())
//! };
//!```
//!

/// Spark Connect gRPC protobuf translated using [tonic]
pub mod spark {
    tonic::include_proto!("spark.connect");
}

pub mod dataframe;
pub mod plan;
pub mod readwriter;
pub mod session;

mod catalog;
mod client;
pub mod column;
mod errors;
mod expressions;
pub mod functions;
pub mod storage;
mod types;
mod utils;

pub use arrow;
pub use dataframe::{DataFrame, DataFrameReader, DataFrameWriter};
pub use session::{SparkSession, SparkSessionBuilder};

#[cfg(test)]
mod tests {

    use std::sync::Arc;

    use arrow::{
        array::Int64Array,
        datatypes::{DataType, Field, Schema},
        record_batch::RecordBatch,
    };

    use super::*;

    use super::functions::*;

    async fn setup() -> SparkSession {
        println!("SparkSession Setup");

        let connection = "sc://127.0.0.1:15002/;user_id=rust_test";

        SparkSessionBuilder::remote(connection)
            .build()
            .await
            .unwrap()
    }

    #[tokio::test]
    async fn test_dataframe_range() {
        let spark = setup().await;

        let mut df = spark.range(None, 100, 1, Some(8));

        let records = df.collect().await.unwrap();

        assert_eq!(records.num_rows(), 100)
    }

    #[tokio::test]
    async fn test_dataframe_sort() {
        let spark = setup().await;

        let mut df = spark
            .range(None, 100, 1, Some(1))
            .sort(vec![col("id").desc()]);

        let rows = df.limit(1).collect().await.unwrap();

        let schema = Schema::new(vec![Field::new("id", DataType::Int64, false)]);

        let value = Int64Array::from(vec![99]);

        let expected_batch = RecordBatch::try_new(Arc::new(schema), vec![Arc::new(value)]).unwrap();

        assert_eq!(expected_batch, rows)
    }

    #[tokio::test]
    async fn test_dataframe_read() {
        let spark = setup().await;

        let path = ["/opt/spark/examples/src/main/resources/people.csv"];

        let mut df = spark
            .read()
            .format("csv")
            .option("header", "True")
            .option("delimiter", ";")
            .load(path);

        let rows = df
            .filter("age > 30")
            .select(vec![col("name")])
            .collect()
            .await
            .unwrap();

        assert_eq!(rows.num_rows(), 1);
    }

    #[tokio::test]
    async fn test_dataframe_write() {
        let spark = setup().await;

        let df = spark
            .clone()
            .range(None, 1000, 1, Some(16))
            .selectExpr(vec!["id AS range_id"]);

        let path = "/opt/spark/examples/src/main/rust/employees/";

        df.write()
            .format("csv")
            .option("header", "true")
            .save(path)
            .await
            .unwrap();

        let mut df = spark
            .clone()
            .read()
            .format("csv")
            .option("header", "true")
            .load([path]);

        let records = df.select(vec![col("range_id")]).collect().await.unwrap();

        assert_eq!(records.num_rows(), 1000)
    }

    #[tokio::test]
    async fn test_dataframe_write_table() {
        let spark = setup().await;

        let df = spark
            .clone()
            .range(None, 1000, 1, Some(16))
            .selectExpr(vec!["id AS range_id"]);

        df.write()
            .mode(dataframe::SaveMode::Overwrite)
            .saveAsTable("test_table")
            .await
            .unwrap();

        let mut df = spark.clone().read().table("test_table", None);

        let records = df.select(vec![col("range_id")]).collect().await.unwrap();

        assert_eq!(records.num_rows(), 1000)
    }
}