spark_connect_core/column.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
//! [Column] represents a column in a DataFrame that holds a [spark::Expression]
use std::convert::From;
use std::ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Not, Rem, Sub};
use crate::spark;
use crate::expressions::{ToExpr, ToLiteralExpr};
use crate::functions::invoke_func;
use crate::types::DataType;
use crate::window::WindowSpec;
/// # Column
///
/// A column holds a specific [spark::Expression] which will be resolved once an action is called.
/// The columns are resolved by the Spark Connect server of the remote session.
///
/// A column instance can be created by in a similar way as to the Spark API. A column with created
/// with `col("*")` or `col("name.*")` is created as an unresolved star attribute which will select
/// all columns or references in the specified column.
///
/// ```rust
/// use spark_connect_rs::{SparkSession, SparkSessionBuilder};
///
/// let spark: SparkSession = SparkSessionBuilder::remote("sc://127.0.0.1:15002/;user_id=example_rs".to_string())
/// .build()
/// .await?;
///
/// // As a &str representing an unresolved column in the dataframe
/// spark.range(None, 1, 1, Some(1)).select("id");
///
/// // By using the `col` function
/// spark.range(None, 1, 1, Some(1)).select(col("id"));
///
/// // By using the `lit` function to return a literal value
/// spark.range(None, 1, 1, Some(1)).select(lit(4.0).alias("num_col"));
///
/// ```
#[derive(Clone, Debug)]
pub struct Column {
/// a [spark::Expression] containing any unresolved value to be leveraged in a [spark::Plan]
pub expression: spark::Expression,
}
/// Trait used to cast columns to a specific [DataType]
///
/// Either with a String or a [DataType]
pub trait CastToDataType {
fn cast_to_data_type(&self) -> spark::expression::cast::CastToType;
}
impl CastToDataType for DataType {
fn cast_to_data_type(&self) -> spark::expression::cast::CastToType {
spark::expression::cast::CastToType::Type(self.clone().into())
}
}
impl CastToDataType for String {
fn cast_to_data_type(&self) -> spark::expression::cast::CastToType {
spark::expression::cast::CastToType::TypeStr(self.to_string())
}
}
impl CastToDataType for &str {
fn cast_to_data_type(&self) -> spark::expression::cast::CastToType {
spark::expression::cast::CastToType::TypeStr(self.to_string())
}
}
impl Column {
/// Returns the column with a new name
///
/// # Example:
/// ```rust
/// let cols = [
/// col("name").alias("new_name"),
/// col("age").alias("new_age")
/// ];
///
/// df.select(cols);
/// ```
pub fn alias(self, value: &str) -> Column {
let alias = spark::expression::Alias {
expr: Some(Box::new(self.expression)),
name: vec![value.to_string()],
metadata: None,
};
let expression = spark::Expression {
expr_type: Some(spark::expression::ExprType::Alias(Box::new(alias))),
};
Column::from(expression)
}
/// An alias for the function `alias`
pub fn name(self, value: &str) -> Column {
self.alias(value)
}
/// Returns a sorted expression based on the ascending order of the column
///
/// # Example:
/// ```rust
/// let df: DataFrame = df.sort(col("id").asc());
///
/// let df: DataFrame = df.sort(asc(col("id")));
/// ```
pub fn asc(self) -> Column {
self.asc_nulls_first()
}
pub fn asc_nulls_first(self) -> Column {
let asc = spark::expression::SortOrder {
child: Some(Box::new(self.expression)),
direction: 1,
null_ordering: 1,
};
let expression = spark::Expression {
expr_type: Some(spark::expression::ExprType::SortOrder(Box::new(asc))),
};
Column::from(expression)
}
pub fn asc_nulls_last(self) -> Column {
let asc = spark::expression::SortOrder {
child: Some(Box::new(self.expression)),
direction: 1,
null_ordering: 2,
};
let expression = spark::Expression {
expr_type: Some(spark::expression::ExprType::SortOrder(Box::new(asc))),
};
Column::from(expression)
}
/// Returns a sorted expression based on the ascending order of the column
///
/// # Example:
/// ```rust
/// let df: DataFrame = df.sort(col("id").desc());
///
/// let df: DataFrame = df.sort(desc(col("id")));
/// ```
pub fn desc(self) -> Column {
self.desc_nulls_first()
}
pub fn desc_nulls_first(self) -> Column {
let asc = spark::expression::SortOrder {
child: Some(Box::new(self.expression)),
direction: 2,
null_ordering: 1,
};
let expression = spark::Expression {
expr_type: Some(spark::expression::ExprType::SortOrder(Box::new(asc))),
};
Column::from(expression)
}
pub fn desc_nulls_last(self) -> Column {
let asc = spark::expression::SortOrder {
child: Some(Box::new(self.expression)),
direction: 2,
null_ordering: 2,
};
let expression = spark::Expression {
expr_type: Some(spark::expression::ExprType::SortOrder(Box::new(asc))),
};
Column::from(expression)
}
pub fn drop_fields<'a, I>(self, field_names: I) -> Column
where
I: IntoIterator<Item = &'a str>,
{
let mut parent_col = self.expression;
for field in field_names {
parent_col = spark::Expression {
expr_type: Some(spark::expression::ExprType::UpdateFields(Box::new(
spark::expression::UpdateFields {
struct_expression: Some(Box::new(parent_col)),
field_name: field.to_string(),
value_expression: None,
},
))),
};
}
Column::from(parent_col)
}
pub fn with_field(self, field_name: &str, col: Column) -> Column {
let update_field = spark::Expression {
expr_type: Some(spark::expression::ExprType::UpdateFields(Box::new(
spark::expression::UpdateFields {
struct_expression: Some(Box::new(self.expression)),
field_name: field_name.to_string(),
value_expression: Some(Box::new(col.to_literal_expr())),
},
))),
};
Column::from(update_field)
}
pub fn substr<T: ToExpr>(self, start_pos: T, length: T) -> Column {
invoke_func(
"substr",
vec![self.to_expr(), start_pos.to_expr(), length.to_expr()],
)
}
/// Casts the column into the Spark DataType
///
/// # Arguments:
///
/// * `to_type` is a string or [DataType] of the target type
///
/// # Example:
/// ```rust
/// use crate::types::DataType;
///
/// let df = df.select([
/// col("age").cast("int"),
/// col("name").cast("string")
/// ])
///
/// // Using DataTypes
/// let df = df.select([
/// col("age").cast(DataType::Integer),
/// col("name").cast(DataType::String)
/// ])
/// ```
pub fn cast<T: CastToDataType>(self, to_type: T) -> Column {
let cast = spark::expression::Cast {
expr: Some(Box::new(self.expression)),
cast_to_type: Some(to_type.cast_to_data_type()),
};
let expression = spark::Expression {
expr_type: Some(spark::expression::ExprType::Cast(Box::new(cast))),
};
Column::from(expression)
}
/// A boolean expression that is evaluated to `true` if the value of the expression is
/// contained by the evaluated values of the arguments
///
/// # Arguments:
///
/// * `cols` a value that implements the [ToLiteralExpr] trait
///
/// # Example:
/// ```rust
/// df.filter(col("name").isin(["Jorge", "Bob"]));
/// ```
pub fn isin<T: ToLiteralExpr>(self, cols: Vec<T>) -> Column {
let mut values = cols
.iter()
.map(|col| Column::from(col.to_literal_expr()))
.collect::<Vec<Column>>();
values.insert(0, self);
invoke_func("in", values)
}
/// A boolean expression that is evaluated to `true` if the value is in the Column
///
/// # Arguments:
///
/// * `cols`: a col reference that is translated into an [spark::Expression]
///
/// # Example:
/// ```rust
/// df.filter(col("name").contains("ge"));
/// ```
pub fn contains<T: ToLiteralExpr>(self, other: T) -> Column {
invoke_func("contains", vec![self.to_expr(), other.to_literal_expr()])
}
/// A filter expression that evaluates if the column startswith a string literal
pub fn startswith<T: ToLiteralExpr>(self, other: T) -> Column {
invoke_func("startswith", vec![self.to_expr(), other.to_literal_expr()])
}
/// A filter expression that evaluates if the column endswith a string literal
pub fn endswith<T: ToLiteralExpr>(self, other: T) -> Column {
invoke_func("endswith", vec![self.to_expr(), other.to_literal_expr()])
}
/// A SQL LIKE filter expression that evaluates the column based on a case sensitive match
pub fn like<T: ToLiteralExpr>(self, other: T) -> Column {
invoke_func("like", vec![self.to_expr(), other.to_literal_expr()])
}
/// A SQL ILIKE filter expression that evaluates the column based on a case insensitive match
pub fn ilike<T: ToLiteralExpr>(self, other: T) -> Column {
invoke_func("ilike", vec![self.to_expr(), other.to_literal_expr()])
}
/// A SQL RLIKE filter expression that evaluates the column based on a regex match
pub fn rlike<T: ToLiteralExpr>(self, other: T) -> Column {
invoke_func("rlike", vec![self.to_expr(), other.to_literal_expr()])
}
/// Equality comparion. Cannot overload the '==' and return something other
/// than a bool
pub fn eq<T: ToExpr>(self, other: T) -> Column {
invoke_func("==", vec![self.to_expr(), other.to_expr()])
}
/// Logical AND comparion. Cannot overload the '&&' and return something other
/// than a bool
pub fn and<T: ToExpr>(self, other: T) -> Column {
invoke_func("and", vec![self.to_expr(), other.to_expr()])
}
/// Logical OR comparion.
pub fn or<T: ToExpr>(self, other: T) -> Column {
invoke_func("or", vec![self.to_expr(), other.to_expr()])
}
/// A filter expression that evaluates to true is the expression is null
pub fn is_null(self) -> Column {
invoke_func("isnull", self)
}
/// A filter expression that evaluates to true is the expression is NOT null
pub fn is_not_null(self) -> Column {
invoke_func("isnotnull", self)
}
pub fn is_nan(self) -> Column {
invoke_func("isNaN", self)
}
/// Defines a windowing column
/// # Arguments:
///
/// * `window`: a [WindowSpec]
///
/// # Example
///
/// ```
/// let window = Window::new()
/// .partition_by(col("name"))
/// .order_by([col("age")])
/// .range_between(Window::unbounded_preceding(), Window::current_row());
///
/// let df = df.with_column("rank", rank().over(window.clone()))
/// .with_column("min", min("age").over(window));
/// ```
pub fn over(self, window: WindowSpec) -> Column {
let window_expr = spark::expression::Window {
window_function: Some(Box::new(self.expression)),
partition_spec: window.partition_spec,
order_spec: window.order_spec,
frame_spec: window.frame_spec,
};
let expression = spark::Expression {
expr_type: Some(spark::expression::ExprType::Window(Box::new(window_expr))),
};
Column::from(expression)
}
}
impl From<spark::Expression> for Column {
/// Used for creating columns from a [spark::Expression]
fn from(expression: spark::Expression) -> Self {
Self { expression }
}
}
impl From<&str> for Column {
/// `&str` values containing a `*` will be created as an unresolved star expression
/// Otherwise, the value is created as an unresolved attribute
fn from(value: &str) -> Self {
let expression = match value {
"*" => spark::Expression {
expr_type: Some(spark::expression::ExprType::UnresolvedStar(
spark::expression::UnresolvedStar {
unparsed_target: None,
},
)),
},
value if value.ends_with(".*") => spark::Expression {
expr_type: Some(spark::expression::ExprType::UnresolvedStar(
spark::expression::UnresolvedStar {
unparsed_target: Some(value.to_string()),
},
)),
},
_ => spark::Expression {
expr_type: Some(spark::expression::ExprType::UnresolvedAttribute(
spark::expression::UnresolvedAttribute {
unparsed_identifier: value.to_string(),
plan_id: None,
},
)),
},
};
Column::from(expression)
}
}
impl Add for Column {
type Output = Self;
fn add(self, other: Self) -> Self {
invoke_func("+", vec![self, other])
}
}
impl Neg for Column {
type Output = Self;
fn neg(self) -> Self {
invoke_func("negative", self)
}
}
impl Sub for Column {
type Output = Self;
fn sub(self, other: Self) -> Self {
invoke_func("-", vec![self, other])
}
}
impl Mul for Column {
type Output = Self;
fn mul(self, other: Self) -> Self {
invoke_func("*", vec![self, other])
}
}
impl Div for Column {
type Output = Self;
fn div(self, other: Self) -> Self {
invoke_func("/", vec![self, other])
}
}
impl Rem for Column {
type Output = Self;
fn rem(self, other: Self) -> Self {
invoke_func("%", vec![self, other])
}
}
impl BitOr for Column {
type Output = Self;
fn bitor(self, other: Self) -> Self {
invoke_func("|", vec![self, other])
}
}
impl BitAnd for Column {
type Output = Self;
fn bitand(self, other: Self) -> Self {
invoke_func("&", vec![self, other])
}
}
impl BitXor for Column {
type Output = Self;
fn bitxor(self, other: Self) -> Self {
invoke_func("^", vec![self, other])
}
}
impl Not for Column {
type Output = Self;
fn not(self) -> Self::Output {
invoke_func("not", vec![self])
}
}