1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
//! Provides a [`Page`] abstraction that stores rows
//! and an associated header necessary for the page to work.
//! Consult the documentation of this type for a list of operations
//! and a description of how page work.
//!
//! A page can provide a split mutable view of its fixed section and its variable section.
//! This is provided through [`Page::split_fixed_var_mut`] with view operations
//! defined on [`FixedView`] and [`VarView`].
//!
//! [ralfj_safe_valid]: https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
//!
//! Technical terms:
//!
//! - `valid` refers to, when referring to a type, granule, or row,
//! depending on the context, a memory location that holds a *safe* object.
//! When "valid for writes" is used, it refers to the `MaybeUninit` case.
//!
//! See the post [Two Kinds of Invariants: Safety and Validity][ralf_safe_valid]
//! for a discussion on safety and validity invariants.
use super::{
blob_store::BlobStore,
indexes::{Byte, Bytes, PageOffset, Size, PAGE_HEADER_SIZE, PAGE_SIZE},
layout::MIN_ROW_SIZE,
util::maybe_uninit_write_slice,
var_len::{
is_granule_offset_aligned, visit_var_len_assume_init, VarLenGranule, VarLenGranuleHeader, VarLenMembers,
VarLenRef,
},
};
use crate::static_assert_size;
use core::{
mem::{self, MaybeUninit},
ops::ControlFlow,
ptr,
};
use thiserror::Error;
#[derive(Error, Debug)]
pub enum Error {
#[error("Want to allocate a var-len object of {need} granules, but have only {have} granules available")]
InsufficientVarLenSpace { need: u16, have: u16 },
#[error("Want to allocate a fixed-len row of {} bytes, but the page is full", need.len())]
InsufficientFixedLenSpace { need: Size },
}
/// A cons-cell in a freelist either
/// for an unused fixed-len cell or a variable-length granule.
#[repr(C)] // Required for a stable ABI.
#[derive(Clone, Copy, Debug)]
struct FreeCellRef {
/// The address of the next free cell in a freelist.
///
/// The `PageOffset::PAGE_END` is used as a sentinel to signal "`None`".
next: PageOffset,
}
impl FreeCellRef {
/// The sentinel for NULL cell references.
const NIL: Self = Self {
next: PageOffset::PAGE_END,
};
/// Replaces the cell reference with `offset`, returning the existing one.
#[inline]
fn replace(&mut self, offset: PageOffset) -> FreeCellRef {
let next = mem::replace(&mut self.next, offset);
Self { next }
}
/// Returns whether the cell reference is non-empty.
#[inline]
const fn has(&self) -> bool {
!self.next.is_at_end()
}
/// Take the first free cell in the freelist starting with `self`, if any,
/// and promote the second free cell as the freelist head.
///
/// # Safety
///
/// When `self.has()`, it must point to a valid `FreeCellRef`.
#[inline]
unsafe fn take_freelist_head(
self: &mut FreeCellRef,
row_data: &Bytes,
adjust_free: impl FnOnce(PageOffset) -> PageOffset,
) -> Option<PageOffset> {
self.has().then(|| {
let head = adjust_free(self.next);
// SAFETY: `self.next` so `head` points to a valid `FreeCellRef`.
let next = unsafe { get_ref(row_data, head) };
self.replace(*next).next
})
}
/// Prepend `new_head` to the freelist starting with `self`.
///
/// SAFETY: `new_head`, after adjustment, must be in bounds of `row_data`.
/// Moreover, it must be valid for writing a `FreeCellRef` to it,
/// which includes being properly aligned with respect to `row_data` for a `FreeCellRef`.
/// Additionally, `self` must contain a valid `FreeCellRef`.
#[inline]
unsafe fn prepend_freelist(
self: &mut FreeCellRef,
row_data: &mut Bytes,
new_head: PageOffset,
adjust_free: impl FnOnce(PageOffset) -> PageOffset,
) {
let next = self.replace(new_head);
let new_head = adjust_free(new_head);
// SAFETY: Per caller contract, `new_head` is in bounds of `row_data`.
// SAFETY: Moreover, `new_head` points to an uninit `FreeCellRef` so we can write to it.
let next_slot: &mut MaybeUninit<FreeCellRef> = unsafe { get_mut(row_data, new_head) };
next_slot.write(next);
}
}
/// All the fixed size header information.
#[repr(C)] // Required for a stable ABI.
#[derive(Debug)]
struct FixedHeader {
/// A pointer to the head of the freelist which stores
/// all the unused (freed) fixed row cells.
/// These cells can be reused when inserting a new row.
next_free: FreeCellRef,
/// High water mark (HWM) for fixed-length rows.
/// Points one past the last-allocated (highest-indexed) fixed-length row,
/// so to allocate a fixed-length row from the gap,
/// post-increment this index.
// TODO(perf,future-work): determine how to lower the high water mark when freeing the topmost row.
last: PageOffset,
/// The number of rows currently in the page.
///
/// N.B. this is not the same as `self.present_rows.len()`
/// as that counts both zero and one bits.
num_rows: u16,
// TODO(stable-module-abi): should this be inlined into the page?
/// For each fixed-length row slot, true if a row is stored there,
/// false if the slot is uninit.
present_rows: bit_vec::BitVec,
#[cfg(debug_assertions)]
fixed_row_size: Size,
}
#[cfg(debug_assertions)]
static_assert_size!(FixedHeader, 48);
#[cfg(not(debug_assertions))]
static_assert_size!(FixedHeader, 40);
impl FixedHeader {
/// Returns a new `FixedHeader`
/// using the provided `fixed_row_size` to compute the `present_rows` bitvec.
#[inline]
fn new(fixed_row_size: Size) -> Self {
Self {
next_free: FreeCellRef::NIL,
// Points one after the last allocated fixed-length row, or `NULL` for an empty page.
last: PageOffset::VAR_LEN_NULL,
num_rows: 0,
present_rows: bit_vec::BitVec::from_elem(PageOffset::PAGE_END.idx().div_ceil(fixed_row_size.len()), false),
#[cfg(debug_assertions)]
fixed_row_size,
}
}
#[cfg(debug_assertions)]
fn debug_check_fixed_row_size(&self, fixed_row_size: Size) {
assert_eq!(self.fixed_row_size, fixed_row_size);
}
#[cfg(not(debug_assertions))]
fn debug_check_fixed_row_size(&self, _: Size) {}
/// Set the (fixed) row starting at `offset`
/// and lasting `fixed_row_size` as `present`.
#[inline]
fn set_row_present(&mut self, offset: PageOffset, fixed_row_size: Size) {
self.set_row_presence(offset, fixed_row_size, true);
self.num_rows += 1;
}
/// Sets whether the (fixed) row starting at `offset`
/// and lasting `fixed_row_size` is `present` or not.
#[inline]
fn set_row_presence(&mut self, offset: PageOffset, fixed_row_size: Size, present: bool) {
self.debug_check_fixed_row_size(fixed_row_size);
self.present_rows.set(offset / fixed_row_size, present);
}
/// Returns whether the (fixed) row starting at `offset`
/// and lasting `fixed_row_size` is present or not.
#[inline]
fn is_row_present(&self, offset: PageOffset, fixed_row_size: Size) -> bool {
self.debug_check_fixed_row_size(fixed_row_size);
self.present_rows.get(offset / fixed_row_size).unwrap()
}
/// Resets the header information to its state
/// when it was first created in [`FixedHeader::new`].
///
/// The header is only good for the original row size.
#[inline]
fn clear(&mut self) {
self.next_free = FreeCellRef::NIL;
self.last = PageOffset::VAR_LEN_NULL;
self.num_rows = 0;
self.present_rows.clear();
}
}
/// All the var-len header information.
#[repr(C)] // Required for a stable ABI.
#[derive(Debug)]
struct VarHeader {
/// A pointer to the head of the freelist which stores
/// all the unused (freed) var-len granules.
/// These cells can be reused when inserting a new row.
next_free: FreeCellRef,
/// The length of the freelist with its head referred to by `next_free`.
/// Stored in units of var-len nodes.
///
/// This field is redundant,
/// as it can be recovered by traversing `next_free`.
/// However, traversing this linked-list is not cache friendly,
/// so we memoize the computation here.
freelist_len: u16,
/// High water mark (HWM) for var-len granules.
/// Points to the last-allocated (lowest-indexed) var-len granule,
/// so to allocate a var-len granule from the gap,
/// pre-decrement this index.
// TODO(perf,future-work): determine how to "lower" the high water mark when freeing the "top"-most granule.
first: PageOffset,
}
static_assert_size!(VarHeader, 6);
impl Default for VarHeader {
fn default() -> Self {
Self {
next_free: FreeCellRef::NIL,
freelist_len: 0,
first: PageOffset::PAGE_END,
}
}
}
impl VarHeader {
/// Resets the header information to its state
/// when it was first created in [`VarHeader::default`].
fn clear(&mut self) {
*self = Self::default();
}
}
/// The metadata / header of a page that is necessary
/// for modifying and interpreting the `row_data`.
///
/// This header info is split into a header for the fixed part
/// and one for the variable part.
/// The header is stored in the same heap allocation as the `row_data`
/// as the whole [`Page`] is `Box`ed.
#[repr(C)] // Required for a stable ABI.
#[repr(align(64))] // Alignment must be same as `VarLenGranule::SIZE`.
struct PageHeader {
/// The header data relating to the fixed component of a row.
fixed: FixedHeader,
/// The header data relating to the var-len component of a row.
var: VarHeader,
}
static_assert_size!(PageHeader, PAGE_HEADER_SIZE);
impl PageHeader {
/// Returns a new `PageHeader` proper for fixed-len rows of `fixed_row_size`.
fn new(fixed_row_size: Size) -> Self {
Self {
fixed: FixedHeader::new(fixed_row_size),
var: VarHeader::default(),
}
}
/// Resets the header information to its state
/// when it was first created in [`PageHeader::new`].
///
/// The header is only good for the original row size.
fn clear(&mut self) {
self.fixed.clear();
self.var.clear();
}
}
/// Fixed-length row portions must be at least large enough to store a `FreeCellRef`.
const _MIN_ROW_SIZE_CAN_STORE_FCR: () = assert!(MIN_ROW_SIZE.len() >= mem::size_of::<FreeCellRef>());
/// [`VarLenGranule`]s must be at least large enough to store a [`FreeCellRef`].
const _VLG_CAN_STORE_FCR: () = assert!(VarLenGranule::SIZE.len() >= MIN_ROW_SIZE.len());
/// Pointers properly aligned for a [`VarLenGranule`] must be properly aligned for [`FreeCellRef`].
/// This is the case as the former's alignment is a multiple of the latter's alignment.
const _VLG_ALIGN_MULTIPLE_OF_FCR: () = assert!(mem::align_of::<VarLenGranule>() % mem::align_of::<FreeCellRef>() == 0);
/// A page of row data with an associated `header` and the raw `row_data` itself.
///
/// As a rough summary, the strategy employed by this page is:
///
/// - The fixed-len parts of rows grows left-to-right
/// and starts from the beginning of the `row_data`
/// until its high water mark (fixed HWM), i.e., `self.header.fixed.last`.
///
/// - The var-len parts of rows grows right-to-left
/// and starts from the end of the `row_data`
/// until its high water mark (variable HWM), i.e., `self.header.var.first`.
///
/// Each var-len object is stored in terms of a linked-list of chunks.
/// Each chunk in this case is a [`VarLenGranule`] taking up 64 bytes where:
/// - 6 bits = length, 10 bits = next-cell-pointer
/// - 62 bytes = the bytes of the object
///
/// - As new rows are added, the HWMs move appropriately.
/// When the fixed and variable HWMs meet, the page is full.
///
/// - When rows are freed, a freelist strategy is used both for
/// the fixed parts and each `VarLenGranule`.
/// These freelists are then used first before using space from the gap.
/// The head of these freelists are stored in `next_free`
/// in the fixed and variable headers respectively.
///
/// - As the fixed parts of rows may store pointers into the var-length section,
/// to ensure that these pointers aren't dangling,
/// the page uses pointer fixups when adding to, deleting from, and copying the page.
/// These fixups are handled by having callers provide `VarLenMembers`
/// to find the var-len reference slots in the fixed parts.
#[repr(C)]
// ^-- Required for a stable ABI.
#[repr(align(64))]
// ^-- Must have align at least that of `VarLenGranule`,
// so that `row_data[PageOffset::PAGE_END - VarLenGranule::SIZE]` is an aligned pointer to `VarLenGranule`.
// TODO(bikeshedding): consider raising the alignment. We may want this to be OS page (4096) aligned.
pub struct Page {
/// The header containing metadata on how to interpret and modify the `row_data`.
header: PageHeader,
/// The actual bytes stored in the page.
/// This contains row data, fixed and variable, and freelists.
row_data: [Byte; PageOffset::PAGE_END.idx()],
}
static_assert_size!(Page, PAGE_SIZE);
/// A mutable view of the fixed-len section of a [`Page`].
pub struct FixedView<'page> {
/// A mutable view of the fixed-len bytes.
fixed_row_data: &'page mut Bytes,
/// A mutable view of the fixed header.
header: &'page mut FixedHeader,
}
impl FixedView<'_> {
/// Returns a mutable view of the row from `start` lasting `fixed_row_size` number of bytes.
///
/// This method is safe, but callers should take care that `start` and `fixed_row_size`
/// are correct for this page, and that `start` is aligned.
/// Callers should further ensure that mutations to the row leave the row bytes
/// in an expected state, i.e. initialized where required by the row type,
/// and with `VarLenRef`s that point to valid granules and with correct lengths.
pub fn get_row_mut(&mut self, start: PageOffset, fixed_row_size: Size) -> &mut Bytes {
self.header.debug_check_fixed_row_size(fixed_row_size);
&mut self.fixed_row_data[start.range(fixed_row_size)]
}
/// Returns a shared view of the row from `start` lasting `fixed_row_size` number of bytes.
fn get_row(&mut self, start: PageOffset, fixed_row_size: Size) -> &Bytes {
self.header.debug_check_fixed_row_size(fixed_row_size);
&self.fixed_row_data[start.range(fixed_row_size)]
}
/// Frees the row starting at `row_offset` and lasting `fixed_row_size` bytes.
///
/// # Safety
///
/// `range_move(0..fixed_row_size, row_offset)` must be in bounds of `row_data`.
/// Moreover, it must be valid for writing a `FreeCellRef` to it,
/// which includes being properly aligned with respect to `row_data` for a `FreeCellRef`.
pub unsafe fn free(&mut self, row_offset: PageOffset, fixed_row_size: Size) {
// TODO(perf,future-work): if `row` is at the HWM, return it to the gap.
// SAFETY: Per caller contract, `row_offset` must be in bounds of `row_data`.
// Moreover, it must be valid for writing a `FreeCellRef` to it,
// which includes being properly aligned with respect to `row_data` for a `FreeCellRef`.
// We also know that `self.header.next_free` contains a valid `FreeCellRef`.
unsafe {
self.header
.next_free
.prepend_freelist(self.fixed_row_data, row_offset, |x| x)
};
self.header.num_rows -= 1;
self.header.set_row_presence(row_offset, fixed_row_size, false);
}
}
/// A mutable view of the var-len section of a [`Page`].
pub struct VarView<'page> {
/// A mutable view of the var-len bytes.
var_row_data: &'page mut Bytes,
/// A mutable view of the var-len header.
header: &'page mut VarHeader,
/// One past the end of the fixed-len section of the page.
last_fixed: PageOffset,
}
impl<'page> VarView<'page> {
/// Returns the number of granules required to store the data,
/// whether the page has enough space,
/// and whether the object needs to go in the blob store.
///
/// If the third value is `true`, i.e., the object will go in the blob store,
/// the first value will always be `1`.
fn has_enough_space_for(&self, len_in_bytes: usize) -> (usize, bool, bool) {
let (num_granules_req, in_blob) = VarLenGranule::bytes_to_granules(len_in_bytes);
let enough_space = num_granules_req <= self.num_granules_available();
(num_granules_req, enough_space, in_blob)
}
/// Returns the number of granules available for allocation.
fn num_granules_available(&self) -> usize {
self.header.freelist_len as usize
+ VarLenGranule::space_to_granules(gap_remaining_size(self.header.first, self.last_fixed))
}
/// Provides an adjuster of offset in terms of `Page::row_data`
/// to work in terms of `VarView::var_row_data`.
///
/// This has to be done due to `page.row_data.split_at_mut(last_fixed)`.
#[inline(always)]
fn adjuster(&self) -> impl FnOnce(PageOffset) -> PageOffset {
let lf = self.last_fixed;
move |offset| offset - lf
}
/// Allocates a linked-list of granules, in the var-len storage of the page,
/// for a var-len object of `obj_len` bytes.
///
/// Returns a [`VarLenRef`] pointing to the head of that list,
/// and a boolean `in_blob` for whether the allocation is a `BlobHash`
/// and the object must be inserted into the large-blob store.
///
/// The length of each granule is set, but no data is written to any granule.
/// Thus, the caller must proceed to write data to each granule for the claimed lengths.
///
/// # Safety post-requirements
///
/// The following are the safety *post-requirements* of calling this method.
/// That is, this method is safe to call,
/// but may leave the page in an inconsistent state
/// which must be rectified before other **unsafe methods** may be called.
///
/// 1. When the returned `in_blob` holds, caller must ensure that,
/// before the granule's data is read from / assumed to be initialized,
/// the granule pointed to by the returned `vlr.first_granule`
/// has an initialized header and a data section initialized to at least
/// as many bytes as claimed by the header.
///
/// 2. The caller must initialize each granule with data for the claimed length
/// of the granule's data.
pub fn alloc_for_len(&mut self, obj_len: usize) -> Result<(VarLenRef, bool), Error> {
// Safety post-requirements of `alloc_for_obj_common`:
// 1. caller promised they will be satisfied.
// 2a. already satisfied as the closure below returns all the summands of `obj_len`.
// 2b. caller promised in 2. that they will satisfy this.
self.alloc_for_obj_common(obj_len, |req_granules| {
let rem = obj_len % VarLenGranule::DATA_SIZE;
(0..req_granules).map(move |rev_idx| {
let len = if rev_idx == 0 && rem != 0 {
// The first allocated granule will be the last in the list.
// Thus, `rev_idx == 0` is the last element and might not take up a full granule.
rem
} else {
VarLenGranule::DATA_SIZE
};
// Caller will initialize the granule's data for `len` bytes.
(<&[u8]>::default(), len)
})
})
}
/// Returns an iterator over all offsets of the `VarLenGranule`s of the var-len object
/// that has its first granule at offset `first_granule`.
/// An empty iterator will be returned when `first_granule` is `NULL`.
///
/// # Safety
///
/// `first_granule` must be an offset to a granule or `NULL`.
/// The data of the granule need not be initialized.
pub unsafe fn granule_offset_iter(&mut self, first_granule: PageOffset) -> GranuleOffsetIter<'_, 'page> {
GranuleOffsetIter {
next_granule: first_granule,
var_view: self,
}
}
/// Allocates and stores `slice` as a linked-list of granules
/// in the var-len storage of the page.
///
/// Returns a [`VarLenRef`] pointing to the head of that list,
/// and a boolean `in_blob` for whether the allocation is a `BlobHash`
/// and the `slice` must be inserted into the large-blob store.
///
/// # Safety post-requirements
///
/// The following are the safety *post-requirements* of calling this method.
/// That is, this method is safe to call,
/// but may leave the page in an inconsistent state
/// which must be rectified before other **unsafe methods** may be called.
///
/// 1. When the returned `in_blob` holds, caller must ensure that,
/// before the granule's data is read from / assumed to be initialized,
/// the granule pointed to by the returned `vlr.first_granule`
/// has an initialized header and a data section initialized to at least
/// as many bytes as claimed by the header.
pub fn alloc_for_slice(&mut self, slice: &[u8]) -> Result<(VarLenRef, bool), Error> {
let obj_len = slice.len();
// Safety post-requirement 2. of `alloc_for_obj_common` is already satisfied
// as `chunks(slice)` will return sub-slices where the sum is `obj_len`.
// Moreover, we initialize each granule already with the right data and length.
// The requirement 1. is forwarded to the caller.
let chunks = |_| VarLenGranule::chunks(slice).rev().map(|c| (c, c.len()));
self.alloc_for_obj_common(obj_len, chunks)
}
/// Allocates for `obj_len` bytes as a linked-list of granules
/// in the var-len storage of the page.
///
/// For every granule in the aforementioned linked-list,
/// the caller must provide an element in the *reversed* iterator `chunks`,
/// and of pairs `(chunk, len)`.
/// To each granule `chunk` will be written and the granule will be of length `len`.
/// The caller can opt to provide `chunk` that is not of `len`.
///
/// Returns a [`VarLenRef`] pointing to the head of that list,
/// and a boolean `in_blob` for whether the allocation is a `BlobHash`
/// and the `slice` must be inserted into the large-blob store.
///
/// # Safety post-requirements
///
/// The following are the safety *post-requirements* of calling this method.
/// That is, this method is safe to call,
/// but may leave the page in an inconsistent state
/// which must be rectified before other **unsafe methods** may be called.
///
/// 1. When the returned `in_blob` holds, caller must ensure that,
/// before the granule's data is read from / assumed to be initialized,
/// the granule pointed to by the returned `vlr.first_granule`
/// has an initialized header and a data section initialized to at least
/// as many bytes as claimed by the header.
///
/// 2. Otherwise, when `in_blob` doesn't hold the safety post-requirements are:
///
/// a. Let `cs = chunks(req_granules)` for the `req_granules` derived from `obj_len`.
/// Then, `obj_len == cs.map(|(_, len)| len).sum()`.
///
/// b. For each `(_, len) ∈ cs`, caller must ensure that
/// the relevant granule is initialized with data for at least `len`
/// before the granule's data is read from / assumed to be initialized.
fn alloc_for_obj_common<'chunk, Cs: Iterator<Item = (&'chunk [u8], usize)>>(
&mut self,
obj_len: usize,
chunks: impl Copy + FnOnce(usize) -> Cs,
) -> Result<(VarLenRef, bool), Error> {
// Check that we have sufficient space to allocate `obj_len` bytes in var-len data.
let (req_granules, enough_space, in_blob) = self.has_enough_space_for(obj_len);
if !enough_space {
return Err(Error::InsufficientVarLenSpace {
need: req_granules.try_into().unwrap_or(u16::MAX),
have: self.num_granules_available().try_into().unwrap_or(u16::MAX),
});
}
// For large blob objects, only reserve a granule.
// The caller promised that they will initialize it with a blob hash.
if in_blob {
let vlr = self.alloc_blob_hash()?;
return Ok((vlr, true));
};
// Write each `chunk` to var-len storage.
// To do this, we allocate granules for and store the chunks in reverse,
// starting with the end first.
// The offset to the previous granule in the iteration is kept to
// link it in as the next pointer in the current iteration.
let mut next = PageOffset::VAR_LEN_NULL;
debug_assert_eq!(obj_len, chunks(req_granules).map(|(_, len)| len).sum::<usize>());
for (chunk, len) in chunks(req_granules) {
// This should never error, since we already checked for available space.
let granule = self.alloc_granule()?;
// SAFETY:
// 1. `granule` is properly aligned as it came from `alloc_granule`
// and so is `next` as it's either NULL or was the previous `granule`.
// This also ensures that both are in bounds
// of the page for `granule + granule + VarLenGranule::SIZE`.
//
// 2. `next` is either NULL or was initialized in the previous loop iteration.
//
// 3. `granule` points to uninit data as the space was just allocated.
unsafe { self.write_chunk_to_granule(chunk, len, granule, next) };
next = granule;
}
Ok((
VarLenRef {
first_granule: next,
length_in_bytes: obj_len as u16,
},
false,
))
}
/// Allocates a granule for a large blob object
/// and returns a [`VarLenRef`] pointing to that granule.
///
/// The granule is left completely uninitialized.
/// It is the caller's responsibility to initialize it with a [`BlobHash`](super::blob_hash::BlobHash).
#[cold]
fn alloc_blob_hash(&mut self) -> Result<VarLenRef, Error> {
// Var-len hashes are 32 bytes, which fits within a single granule.
self.alloc_granule().map(VarLenRef::large_blob)
}
/// Inserts `var_len_obj` into `blob_store`
/// and stores the blob hash in the granule pointed to by `vlr.first_granule`.
///
/// This insertion will never fail.
///
/// # Safety
///
/// `vlr.first_granule` must point to an uninit `VarLenGranule` in bounds of this page.
pub unsafe fn write_large_blob_hash_to_granule(
&mut self,
blob_store: &mut dyn BlobStore,
var_len_obj: &impl AsRef<[u8]>,
vlr: VarLenRef,
) {
let hash = blob_store.insert_blob(var_len_obj.as_ref());
let granule = vlr.first_granule;
// SAFETY:
// 1. `granule` is properly aligned for `VarLenGranule` and is in bounds of the page.
// 2. The null granule is trivially initialized.
// 3. The caller promised that `granule` is uninit.
unsafe { self.write_chunk_to_granule(&hash.data, hash.data.len(), granule, PageOffset::VAR_LEN_NULL) };
}
/// Write the `chunk` (data) to the uninit [`VarLenGranule`] pointed to by `granule`,
/// set the granule's length to be `len`,
/// and set the next granule in the list to `next`.
///
/// SAFETY:
///
/// 1. Both `granule` and `next` must be properly aligned pointers to [`VarLenGranule`]s
/// and they must be in bounds of the page. However, neither need to point to init data.
///
/// 2. The caller must initialize the granule pointed to by `next`
/// before the granule-list is read from (e.g., iterated on).
/// The null granule is considered trivially initialized.
///
/// 3. The space pointed to by `granule`
/// must be unused/freed/uninit as it will be overwritten here.
unsafe fn write_chunk_to_granule(&mut self, chunk: &[u8], len: usize, granule: PageOffset, next: PageOffset) {
let granule = self.adjuster()(granule);
// SAFETY: A `PageOffset` is always in bounds of the page.
let ptr: *mut VarLenGranule = unsafe { offset_to_ptr_mut(self.var_row_data, granule).cast() };
// TODO(centril,bikeshedding): check if creating the `VarLenGranule` first on stack
// and then writing to `ptr` would have any impact on perf.
// This would be nicer as it requires less `unsafe`.
// We need to initialize `Page::header`
// without materializing a `&mut` as that is instant UB.
// SAFETY: `ptr` isn't NULL as `&mut self.row_data` itself is a non-null pointer.
let header = unsafe { ptr::addr_of_mut!((*ptr).header) };
// SAFETY: `header` is valid for writes as only we have exclusive access.
// (1) The `ptr` was also promised as aligned
// and `granule + (granule + 64 bytes)` is in bounds of the page per caller contract.
// (2) Moreover, `next` will be an initialized granule per caller contract,
// so we can link it into the list without causing UB elsewhere.
// (3) It's also OK to write to `granule` as it's unused.
unsafe {
header.write(VarLenGranuleHeader::new(len as u8, next));
}
// Copy the data into the granule.
// SAFETY: We can treat any part of `row_data` as `.data`. Also (1) and (2).
maybe_uninit_write_slice(unsafe { &mut (*ptr).data }, chunk);
}
/// Allocate a [`MaybeUninit<VarLenGranule>`](VarLenGranule) at the returned [`PageOffset`].
///
/// This offset will be properly aligned for `VarLenGranule` when converted to a pointer.
///
/// Returns an error when there are neither free granules nor space in the gap left.
fn alloc_granule(&mut self) -> Result<PageOffset, Error> {
let uninit_granule = self
.alloc_from_freelist()
.or_else(|| self.alloc_from_gap())
.ok_or(Error::InsufficientVarLenSpace { need: 1, have: 0 })?;
debug_assert!(
is_granule_offset_aligned(uninit_granule),
"Allocated an unaligned var-len granule: {:x}",
uninit_granule,
);
Ok(uninit_granule)
}
/// Allocate a [`MaybeUninit<VarLenGranule>`](VarLenGranule) at the returned [`PageOffset`]
/// taken from the freelist, if any.
#[inline]
fn alloc_from_freelist(&mut self) -> Option<PageOffset> {
// SAFETY: `header.next_free` points to a `c: FreeCellRef` when the former `.has()`.
let free = unsafe {
self.header
.next_free
.take_freelist_head(self.var_row_data, |o| o - self.last_fixed)
}?;
self.header.freelist_len -= 1;
Some(free)
}
/// Allocate a [`MaybeUninit<VarLenGranule>`](VarLenGranule) at the returned [`PageOffset`]
/// taken from the gap, if there is space left, or `None` if there is insufficient space.
#[inline]
fn alloc_from_gap(&mut self) -> Option<PageOffset> {
if gap_enough_size_for_row(self.header.first, self.last_fixed, VarLenGranule::SIZE) {
// `var.first` points *at* the lowest-indexed var-len granule,
// *not* before it, so pre-decrement.
self.header.first -= VarLenGranule::SIZE;
Some(self.header.first)
} else {
None
}
}
/// Free a single var-len granule pointed to at by `offset`.
///
/// SAFETY: `offset` must point to a valid [`VarLenGranule`].
#[inline]
unsafe fn free_granule(&mut self, offset: PageOffset) {
// TODO(perf,future-work): if `chunk` is at the HWM, return it to the gap.
// Returning a single chunk to the gap is easy,
// but we want to return a whole "run" of sequential freed chunks,
// which requries some bookkeeping (or an O(> n) linked list traversal).
self.header.freelist_len += 1;
let adjuster = self.adjuster();
// SAFETY: Per caller contract, `offset` is a valid `VarLenGranule`,
// and is therefore in bounds of the page row data.
// By `_VLG_CAN_STORE_FCR`, and as we won't be reading from the granule anymore,
// we know that this makes it valid for writing a `FreeCellRef` to it.
// Moreover, by `_VLG_ALIGN_MULTIPLE_OF_FCR`,
// the derived pointer is properly aligned (64) for a granule
// and as `64 % 2 == 0` the alignment of a granule works for a `FreeCellRef`.
// Finally, `self.header.next_free` contains a valid `FreeCellRef`.
unsafe {
self.header
.next_free
.prepend_freelist(self.var_row_data, offset, adjuster)
};
}
/// Returns a reference to the granule at `offset`.
///
/// SAFETY: `offset` must point to a valid [`VarLenGranule`].
unsafe fn get_granule_ref(&self, offset: PageOffset) -> &VarLenGranule {
unsafe { get_ref(self.var_row_data, self.adjuster()(offset)) }
}
/// Frees the blob pointed to by the [`BlobHash`] stored in the granule at `offset`.
///
/// Panics when `offset` is NULL.
///
/// SAFETY: `offset` must point to a valid [`VarLenGranule`] or be NULL.
#[cold]
#[inline(never)]
unsafe fn free_blob(&self, offset: PageOffset, blob_store: &mut dyn BlobStore) {
assert!(!offset.is_var_len_null());
// SAFETY: Per caller contract + the assertion above,
// we know `offset` refers to a valid `VarLenGranule`.
let granule = unsafe { self.get_granule_ref(offset) };
// Actually free the blob.
let hash = granule.blob_hash();
blob_store.free_blob(&hash).expect("failed to free var-len blob");
}
/// Frees an entire var-len linked-list object.
///
/// If the `var_len_obj` is a large blob,
/// the `VarLenGranule` which stores its blob hash will be freed from the page,
/// but the blob itself will not be freed from the blob store.
/// If used incorrectly, this may leak large blobs.
///
/// This behavior is used to roll-back on failure in `[crate::bflatn::ser::write_av_to_page]`,
/// where inserting large blobs is deferred until all allocations succeed.
/// Freeing a fully-inserted object should instead use [`Self::free_object`].
///
/// # Safety
///
/// `var_len_obj.first_granule` must point to a valid [`VarLenGranule`] or be NULL.
pub unsafe fn free_object_ignore_blob(&mut self, var_len_obj: VarLenRef) {
let mut next_granule = var_len_obj.first_granule;
while !next_granule.is_var_len_null() {
// SAFETY: Per caller contract, `first_granule` points to a valid granule or is NULL.
// We know however at this point that it isn't NULL so it is valid.
// Thus the successor is too a valid granule or NULL.
// However, again, at this point we know that the successor isn't NULL.
// It follows then by induction that any `next_granule` at this point is valid.
// Thus we have fulfilled the requirement that `next_granule` points to a valid granule.
let header = unsafe { self.get_granule_ref(next_granule) }.header;
// SAFETY: `next_granule` still points to a valid granule per above.
unsafe {
self.free_granule(next_granule);
}
next_granule = header.next();
}
}
/// Frees an entire var-len linked-list object.
///
/// SAFETY: `var_len_obj.first_granule` must point to a valid [`VarLenGranule`] or be NULL.
unsafe fn free_object(&mut self, var_len_obj: VarLenRef, blob_store: &mut dyn BlobStore) {
// For large blob objects, extract the hash and tell `blob_store` to discard it.
if var_len_obj.is_large_blob() {
// SAFETY: `var_len_obj.first_granule` was promised to
// point to a valid [`VarLenGranule`] or be NULL, as required.
unsafe {
self.free_blob(var_len_obj.first_granule, blob_store);
}
}
// SAFETY: `free_object_ignore_blob` has the same safety contract as this method.
unsafe {
self.free_object_ignore_blob(var_len_obj);
}
}
}
/// An iterator yielding the offsets to the granules of a var-len object.
pub struct GranuleOffsetIter<'vv, 'page> {
/// Our mutable view of the page.
var_view: &'vv mut VarView<'page>,
/// The offset, that will be yielded next, pointing to next granule.
next_granule: PageOffset,
}
impl GranuleOffsetIter<'_, '_> {
/// Returns a mutable view of, for the `granule` at `offset`, `granule.data[start..]`.
///
/// # Safety
///
/// - `offset` must point to a valid granule
/// - `start < VarLenGranule::DATA_SIZE`
pub unsafe fn get_mut_data(&mut self, offset: PageOffset, start: usize) -> &mut Bytes {
// SAFETY: Caller promised that `offset` points o a valid granule.
let granule: &mut VarLenGranule = unsafe { get_mut(self.var_view.var_row_data, offset) };
// SAFETY: Caller promised `start < granule.data.len()`.
unsafe { granule.data.as_mut_slice().get_unchecked_mut(start..) }
}
}
impl Iterator for GranuleOffsetIter<'_, '_> {
type Item = PageOffset;
fn next(&mut self) -> Option<Self::Item> {
let adjust = self.var_view.adjuster();
if self.next_granule.is_var_len_null() {
return None;
}
let ret = adjust(self.next_granule);
// SAFETY: By construction,
// the initial `next_granule` was promised to either be `NULL` or point to a valid granule.
// For a given granule, the same applies to its `.next()` granule.
// At this point, we've excluded `NULL`,
// so we know inductively that `next_granule` points to a valid granule, as required.
let granule: &VarLenGranule = unsafe { get_ref(self.var_view.var_row_data, ret) };
self.next_granule = granule.header.next();
Some(ret)
}
}
/// Assert that `ptr` is sufficiently aligned to reference a value of `T`.
///
/// In release mode, this is a no-op.
fn assert_alignment<T>(ptr: *const Byte) {
debug_assert_eq!(
ptr as usize % mem::align_of::<T>(),
0,
"Wanted a PageOffset with align 0x{:x} (for {}) but found 0x{:x}",
mem::align_of::<T>(),
std::any::type_name::<T>(),
ptr as usize,
);
}
/// Returns a reference to the [`T`] pointed to at by `offset`.
///
/// # Safety
///
/// `offset` must point to a valid `T` in `row_data`.
#[inline]
pub unsafe fn get_ref<T>(row_data: &Bytes, offset: PageOffset) -> &T {
// SAFETY: Caller promised that `offset` is in bounds of `row_data`.
let ptr = unsafe { offset_to_ptr(row_data, offset) };
assert_alignment::<T>(ptr);
let ptr = ptr.cast::<T>();
// SAFETY: Caller promised that `offset` points to a `T` in `row_data`.
unsafe { &*ptr }
}
/// Returns a mutable reference to the [`T`] pointed to at by `offset`.
///
/// # Safety
///
/// `offset` must point to a valid `T` in `row_data`.
#[inline]
unsafe fn get_mut<T>(row_data: &mut Bytes, offset: PageOffset) -> &mut T {
// SAFETY: Caller promised that `offset` is in bounds of `row_data`.
let ptr = unsafe { offset_to_ptr_mut(row_data, offset) };
assert_alignment::<T>(ptr as *const Byte);
let ptr = ptr.cast::<T>();
// SAFETY: Caller promised that `offset` points to a `T` in `row_data`.
unsafe { &mut *ptr }
}
/// Returns a raw const pointer into the `row_data` at `offset` bytes.
///
/// # Safety
///
/// `offset` must be in bounds or one past end of `row_data`.
#[inline]
unsafe fn offset_to_ptr(row_data: &Bytes, offset: PageOffset) -> *const Byte {
debug_assert!(offset.idx() <= row_data.len());
// SAFETY: per caller contract, `offset` is in bounds or one past end of `row_data`.
unsafe { row_data.as_ptr().add(offset.idx()) }
}
/// Returns a raw mutable pointer into the `row_data` at `offset` bytes.
///
/// SAFETY: `offset` must be in bounds or one past end of `row_data`.
#[inline]
unsafe fn offset_to_ptr_mut(row_data: &mut Bytes, offset: PageOffset) -> *mut Byte {
debug_assert!(offset.idx() <= row_data.len());
// SAFETY: per caller contract, `offset` is in bounds or one past end of `row_data`.
unsafe { row_data.as_mut_ptr().add(offset.idx()) }
}
/// Returns the size of the gap,
/// assuming `first_var` is the high water mark (HWM) of the var-len section,
/// pointing *at* the granule with the lowest offset,
/// and `last_fixed` is the HWM of the fixed-len section,
/// pointing *one past the end* of the last fixed row.
#[inline]
fn gap_remaining_size(first_var: PageOffset, last_fixed: PageOffset) -> Size {
// For illustration, suppose `row_data` is 10 bytes, i.e., `[Byte; 10]`.
// Let's assume the following setup with a full page,
// where capital letters are fixed rows and lower case are variable.
//
// [ A, B, C, D, E, f, g, h, i, j ]
// ^
// first_var
// ^
// last_fixed
//
// The high water mark `first_var` points *at* the granule with the lowest offset (`f`).
// Whereas `last_fixed` points *one past the end* (`f`) of the last fixed row (`E`)
//
// This is the case we have to consider in terms of possible underflow.
// As both HWMs would point at the same place,
// the result would be `0`, and no underflow occurs.
Size((first_var - last_fixed).0)
}
/// Returns whether the remaining gap is large enough to host an object `fixed_row_size` large,
/// assuming `first_var` is the high water mark (HWM) of the var-len section,
/// pointing *at* the granule with the lowest offset,
/// and `last_fixed` is the HWM of the fixed-len section,
/// pointing *one past the end* of the last fixed row.
#[inline]
fn gap_enough_size_for_row(first_var: PageOffset, last_fixed: PageOffset, fixed_row_size: Size) -> bool {
gap_remaining_size(first_var, last_fixed) >= fixed_row_size
}
impl Page {
/// Returns a new page allocated on the heap.
///
/// The new page supports fixed rows of size `fixed_row_size`.
pub fn new(fixed_row_size: Size) -> Box<Self> {
// TODO(perf): mmap? allocator may do so already.
// mmap may be more efficient as we save allocator metadata.
use std::alloc::{alloc, handle_alloc_error, Layout};
let layout = Layout::new::<Page>();
// SAFETY: The layout's size is non-zero.
let raw: *mut Page = unsafe { alloc(layout) }.cast();
if raw.is_null() {
handle_alloc_error(layout);
}
// We need to initialize `Page::header`
// without materializing a `&mut` as that is instant UB.
// SAFETY: `raw` isn't NULL.
let header = unsafe { ptr::addr_of_mut!((*raw).header) };
// SAFETY: `header` is valid for writes as only we have exclusive access.
// The pointer is also aligned.
unsafe { header.write(PageHeader::new(fixed_row_size)) };
// SAFETY: We used the global allocator with a layout for `Page`.
// We have initialized the `header`
// making the pointee a `Page` valid for reads and writes.
unsafe { Box::from_raw(raw) }
}
/// Returns the number of rows stored in this page.
pub fn num_rows(&self) -> usize {
self.header.fixed.num_rows as usize
}
/// Returns the range of row data starting at `offset` and lasting `size` bytes.
pub fn get_row_data(&self, row: PageOffset, size: Size) -> &Bytes {
&self.row_data[row.range(size)]
}
/// Returns whether the row at `offset` is present or not.
pub fn has_row_offset(&self, fixed_row_size: Size, offset: PageOffset) -> bool {
// Check that the `offset` is properly aligned for a row of size `fixed_row_size`.
// This cannot be `debug_assert!` as the caller could rely on this
// reporting properly whether `offset` is at a row boundary or not.
assert_eq!(offset.idx() % fixed_row_size.len(), 0);
self.header.fixed.is_row_present(offset, fixed_row_size)
}
/// Returns split mutable views of this page over the fixed and variable sections.
pub fn split_fixed_var_mut(&mut self) -> (FixedView<'_>, VarView<'_>) {
// The fixed HWM (`fixed.last`) points *one past the end* of the fixed section
// which is exactly what we want for `split_at_mut`.
let last_fixed = self.header.fixed.last;
let (fixed_row_data, var_row_data) = self.row_data.split_at_mut(last_fixed.idx());
// Construct the fixed-len view.
let fixed = FixedView {
fixed_row_data,
header: &mut self.header.fixed,
};
// Construct the var-len view.
let var = VarView {
var_row_data,
header: &mut self.header.var,
last_fixed,
};
(fixed, var)
}
/// Return the total required var-len granules to store `objects`.
pub fn total_granules_required_for_objects(objects: &[impl AsRef<[u8]>]) -> usize {
objects
.iter()
.map(|obj| VarLenGranule::bytes_to_granules(obj.as_ref().len()).0)
.sum()
}
/// Does the page have space to store a row,
/// where the fixed size part is `fixed_row_size` bytes large,
/// and the row has the given `var_len_objects`?
pub fn has_space_for_row_with_objects(&self, fixed_row_size: Size, var_len_objects: &[impl AsRef<[u8]>]) -> bool {
let num_granules_required = Self::total_granules_required_for_objects(var_len_objects);
self.has_space_for_row(fixed_row_size, num_granules_required)
}
/// Does the page have space to store a row,
/// where the fixed size part is `fixed_row_size` bytes large,
/// and the variable part requires `num_granules`.
pub fn has_space_for_row(&self, fixed_row_size: Size, num_granules: usize) -> bool {
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
// Determine the gap remaining after allocating for the fixed part.
let gap_remaining = gap_remaining_size(self.header.var.first, self.header.fixed.last);
let gap_avail_for_granules = if self.header.fixed.next_free.has() {
// If we have a free fixed length block, then we can use the whole gap for var-len granules.
gap_remaining
} else {
// If we need to grow the fixed-length store into the gap,
if gap_remaining < fixed_row_size {
// if the gap is too small for fixed-length row, fail.
return false;
}
// Otherwise, the space available in the gap for var-len granules
// is the current gap size less the fixed-len row size.
gap_remaining - fixed_row_size
};
// Convert the gap size to granules.
let gap_in_granules = VarLenGranule::space_to_granules(gap_avail_for_granules);
// Account for granules available in the freelist.
let needed_granules_after_freelist = num_granules.saturating_sub(self.header.var.freelist_len as usize);
gap_in_granules >= needed_granules_after_freelist
}
/// Returns whether the row is full with respect to storing a fixed row with `fixed_row_size`
/// and no variable component.
pub fn is_full(&self, fixed_row_size: Size) -> bool {
!self.has_space_for_row(fixed_row_size, 0)
}
/// Will leave partially-allocated chunks if fails prematurely,
/// so always check `Self::has_space_for_row` before calling.
///
/// This method is provided for testing the page store directly;
/// higher-level codepaths are expected to use [`crate::bflatn::ser::write_av_to_page`],
/// which performs similar operations to this method,
/// but handles rollback on failure appropriately.
///
/// This function will never fail if `Self::has_space_for_row` has returned true.
///
/// # Safety
///
/// - `var_len_visitor` is suitable for visiting var-len refs in `fixed_row`.
///
/// - `fixed_row.len()` must be consistent with `var_len_visitor` and `self`.
/// That is, `VarLenMembers` must be specialized for a row type with that length,
/// and all past, present, and future fixed-length rows stored in this `Page`
/// must also be of that length.
pub unsafe fn insert_row(
&mut self,
fixed_row: &Bytes,
var_len_objects: &[impl AsRef<[u8]>],
var_len_visitor: &impl VarLenMembers,
blob_store: &mut dyn BlobStore,
) -> Result<PageOffset, Error> {
// Allocate the fixed-len row.
let fixed_row_size = Size(fixed_row.len() as u16);
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
// SAFETY: Caller promised that `fixed_row.len()` uses the right `fixed_row_size`
// and we trust that others have too.
let fixed_len_offset = unsafe { self.alloc_fixed_len(fixed_row_size)? };
// Store the fixed-len row.
let (mut fixed, mut var) = self.split_fixed_var_mut();
let row = fixed.get_row_mut(fixed_len_offset, fixed_row_size);
row.copy_from_slice(fixed_row);
// Store all var-len refs into their appropriate slots in the fixed-len row.
// SAFETY:
// - The `fixed_len_offset` given by `alloc_fixed_len` resuls in `row`
// being properly aligned for the row type.
// - Caller promised that `fixed_row.len()` matches the row type size exactly.
// - `var_len_visitor` is suitable for `fixed_row`.
let vlr_slot_iter = unsafe { var_len_visitor.visit_var_len_mut(row) };
for (var_len_ref_slot, var_len_obj) in vlr_slot_iter.zip(var_len_objects) {
let (var_len_ref, in_blob) = var.alloc_for_slice(var_len_obj.as_ref())?;
if in_blob {
// The blob store insertion will never fail.
// SAFETY: `alloc_for_slice` always returns a pointer
// to a `VarLenGranule` in bounds of this page.
// As `in_blob` holds, it is also uninit, as required.
// We'll now make that granule valid.
unsafe {
var.write_large_blob_hash_to_granule(blob_store, var_len_obj, var_len_ref);
}
}
var_len_ref_slot.write(var_len_ref);
}
Ok(fixed_len_offset)
}
/// Allocates space for a fixed size row of `fixed_row_size` bytes.
///
/// # Safety
///
/// `fixed_row_size` must be equal to the value passed
/// to all other methods ever invoked on `self`.
pub unsafe fn alloc_fixed_len(&mut self, fixed_row_size: Size) -> Result<PageOffset, Error> {
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
self.alloc_fixed_len_from_freelist(fixed_row_size)
.or_else(|| self.alloc_fixed_len_from_gap(fixed_row_size))
.ok_or(Error::InsufficientFixedLenSpace { need: fixed_row_size })
}
/// Allocates a space for a fixed size row of `fixed_row_size` in the freelist, if possible.
#[inline]
fn alloc_fixed_len_from_freelist(&mut self, fixed_row_size: Size) -> Option<PageOffset> {
let header = &mut self.header.fixed;
// SAFETY: `header.next_free` points to a `FreeCellRef` when the former `.has()`.
let free = unsafe { header.next_free.take_freelist_head(&self.row_data, |x| x) }?;
header.set_row_present(free, fixed_row_size);
Some(free)
}
/// Allocates a space for a fixed size row of `fixed_row_size` in the freelist, if possible.
#[inline]
fn alloc_fixed_len_from_gap(&mut self, fixed_row_size: Size) -> Option<PageOffset> {
if gap_enough_size_for_row(self.header.var.first, self.header.fixed.last, fixed_row_size) {
// Enough space in the gap; move the high water mark and return the old HWM.
// `fixed.last` points *after* the highest-indexed fixed-len row,
// so post-increment.
let ptr = self.header.fixed.last;
self.header.fixed.last += fixed_row_size;
self.header.fixed.set_row_present(ptr, fixed_row_size);
Some(ptr)
} else {
// Not enough space in the gap for another row!
None
}
}
/// Returns an iterator over all the [`PageOffset`]s of the fixed rows in this page
/// beginning with `starting_from`.
///
/// The rows are assumed to be `fixed_row_size` bytes long
/// and `starting_from` is assumed to be at a valid starting `PageOffset` for a fixed row.
///
/// NOTE: This method is not `unsafe` as it cannot trigger UB.
/// However, when provided with garbage input, it will return garbage back.
/// It is the caller's responsibility to ensure that `PageOffset`s derived from
/// this iterator are valid when used to do anything `unsafe`.
fn iter_fixed_len_from(&self, fixed_row_size: Size, starting_from: PageOffset) -> FixedLenRowsIter<'_> {
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
FixedLenRowsIter {
next_row: starting_from,
header: &self.header.fixed,
fixed_row_size,
rows_traversed_so_far: 0,
}
}
/// Returns an iterator over all the [`PageOffset`]s of the fixed rows in this page.
///
/// The rows are assumed to be `fixed_row_size` bytes long.
///
/// NOTE: This method is not `unsafe` as it cannot trigger UB.
/// However, when provided with garbage input, it will return garbage back.
/// It is the caller's responsibility to ensure that `PageOffset`s derived from
/// this iterator are valid when used to do anything `unsafe`.
pub fn iter_fixed_len(&self, fixed_row_size: Size) -> FixedLenRowsIter<'_> {
self.iter_fixed_len_from(fixed_row_size, PageOffset::VAR_LEN_NULL)
}
/// Returns an iterator over all the `VarLenGranule`s of the var-len object
/// that has its first granule at offset `first_granule`.
/// An empty iterator will be returned when `first_granule` is `NULL`.
///
/// # Safety
///
/// `first_granule` must be an offset to a valid granule or `NULL`.
pub unsafe fn iter_var_len_object(
&self,
first_granule: PageOffset,
) -> impl Clone + Iterator<Item = &VarLenGranule> {
VarLenGranulesIter {
page: self,
next_granule: first_granule,
}
}
/// Returns an iterator over the data of all the `VarLenGranule`s of the var-len object
/// that has its first granule at offset `first_granule`.
/// An empty iterator will be returned when `first_granule` is `NULL`.
///
/// # Safety
///
/// `first_granule` must be an offset to a valid granule or `NULL`.
pub unsafe fn iter_vlo_data(&self, first_granule: PageOffset) -> impl '_ + Clone + Iterator<Item = &[u8]> {
// SAFETY: Caller and callee have the exact same safety requirements.
unsafe { self.iter_var_len_object(first_granule) }.map(|g| g.data())
}
/// Free a row, marking its fixed-len and var-len storage granules as available for re-use.
///
/// # Safety
///
/// - `fixed_row` must point to a valid row in this page.
///
/// - `fixed_row_size` must be the size in bytes of the fixed part
/// of all past, present, and future rows in this page and future rows in this page.
///
/// - The `var_len_visitor` must visit the same set of `VarLenRef`s in the row
/// as the visitor provided to `insert_row`.
pub unsafe fn delete_row(
&mut self,
fixed_row: PageOffset,
fixed_row_size: Size,
var_len_visitor: &impl VarLenMembers,
blob_store: &mut dyn BlobStore,
) {
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
let (mut fixed, mut var) = self.split_fixed_var_mut();
// Visit the var-len members of the fixed row and free them.
let row = fixed.get_row(fixed_row, fixed_row_size);
// SAFETY: Allocation initializes the `VarLenRef`s in the row,
// so a row that has been allocated and is live
// will have initialized `VarLenRef` members.
let var_len_refs = unsafe { visit_var_len_assume_init(var_len_visitor, row) };
for var_len_ref in var_len_refs {
// SAFETY: A sound call to `visit_var_len_assume_init`,
// which we've justified that the above is,
// returns an iterator, that will only yield `var_len_ref`s,
// where `var_len_ref.first_granule` points to a valid `VarLenGranule` or be NULL.
unsafe {
var.free_object(var_len_ref, blob_store);
}
}
// SAFETY: Caller promised that `fixed_row` points to a valid row in the page.
// Thus, `range_move(0..fixed_row_size, fixed_row)` is in bounds of `row_data`.
// Moreover, this entails that it is valid for writing a `FreeCellRef`
// to the beginning or entire range, as any row can at least hold a `FreeCellRef`
// and will be properly aligned for it as well.
unsafe {
fixed.free(fixed_row, fixed_row_size);
}
}
/// Returns the total number of granules used by the fixed row at `fixed_row_offset`
/// and lasting `fixed_row_size` bytes where `var_len_visitor` is used to find
/// the [`VarLenRef`]s in the fixed row.
///
/// # Safety
///
/// - `fixed_row_offset` must refer to a previously-allocated and initialized row in `self`,
/// and must not have been de-allocated. In other words, the fixed row must be *valid*.
///
/// - `fixed_row_size` and `var_len_visitor` must be consistent with each other
/// and with all other calls to any methods on `self`.
pub unsafe fn row_total_granules(
&self,
fixed_row_offset: PageOffset,
fixed_row_size: Size,
var_len_visitor: &impl VarLenMembers,
) -> usize {
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
let fixed_row = self.get_row_data(fixed_row_offset, fixed_row_size);
// SAFETY:
// - Caller promised that `fixed_row_offset` is a valid row.
// - Caller promised consistency of `var_len_visitor` wrt. `fixed_row_size` and this page.
let vlr_iter = unsafe { visit_var_len_assume_init(var_len_visitor, fixed_row) };
vlr_iter.map(|slot| slot.granules_used()).sum()
}
/// Copy as many rows from `self` for which `filter` returns `true` into `dst` as will fit,
/// starting from `starting_from`.
///
/// If less than the entirety of `self` could be processed, return `Continue(resume_point)`,
/// where `resume_point` is the `starting_from` argument of a subsequent call to `copy_filter_into`
/// that will complete the iteration.
/// `dst` should be assumed to be full in this case,
/// as it does not contain enough free space to store the row of `self` at `resume_point`.
///
/// If the entirety of `self` is processed, return `Break`.
/// `dst` may or may not be full in this case, but is likely not full.
///
/// # Safety
///
/// The `var_len_visitor` must visit the same set of `VarLenRef`s in the row
/// as the visitor provided to all other methods on `self` and `dst`.
///
/// The `fixed_row_size` must be consistent with the `var_len_visitor`,
/// and be equal to the value provided to all other methods on `self` and `dst`.
///
/// The `starting_from` offset must point to a valid starting offset
/// consistent with `fixed_row_size`.
/// That is, it must not point into the middle of a row.
pub unsafe fn copy_filter_into(
&self,
starting_from: PageOffset,
dst: &mut Page,
fixed_row_size: Size,
var_len_visitor: &impl VarLenMembers,
blob_store: &mut dyn BlobStore,
mut filter: impl FnMut(&Page, PageOffset) -> bool,
) -> ControlFlow<(), PageOffset> {
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
for row_offset in self
.iter_fixed_len_from(fixed_row_size, starting_from)
// Only copy rows satisfying the predicate `filter`.
.filter(|o| filter(self, *o))
{
// SAFETY:
// - `starting_from` points to a valid row and thus `row_offset` also does.
// - `var_len_visitor` will visit the right `VarLenRef`s and is consistent with other calls.
// - `fixed_row_size` is consistent with `var_len_visitor` and `self`.
if !unsafe { self.copy_row_into(row_offset, dst, fixed_row_size, var_len_visitor, blob_store) } {
// Target doesn't have enough space for row;
// stop here and return the offset of the uncopied row
// so a later call to `copy_filter_into` can start there.
return ControlFlow::Continue(row_offset);
}
}
// The `for` loop completed.
// We successfully copied the entire page of `self` into `target`.
// The caller doesn't need to resume from this offset.
ControlFlow::Break(())
}
/// Copies the row at `row_offset` from `self` into `dst`
/// or returns `false` otherwise if `dst` has no space for the row.
///
/// # Safety
///
/// - `row_offset` offset must point to a valid row.
///
/// - `var_len_visitor` must visit the same set of `VarLenRef`s in the row
/// as the visitor provided to all other methods on `self` and `dst`.
///
/// - `fixed_row_size` must be consistent with the `var_len_visitor`,
/// and be equal to the value provided to all other methods on `self` and `dst`.
unsafe fn copy_row_into(
&self,
row_offset: PageOffset,
dst: &mut Page,
fixed_row_size: Size,
var_len_visitor: &impl VarLenMembers,
blob_store: &mut dyn BlobStore,
) -> bool {
self.header.fixed.debug_check_fixed_row_size(fixed_row_size);
// SAFETY: Caller promised that `starting_from` points to a valid row
// consistent with `fixed_row_size` which was also
// claimed to be consistent with `var_len_visitor` and `self`.
let required_granules = unsafe { self.row_total_granules(row_offset, fixed_row_size, var_len_visitor) };
if !dst.has_space_for_row(fixed_row_size, required_granules) {
// Target doesn't have enough space for row.
return false;
};
let src_row = self.get_row_data(row_offset, fixed_row_size);
// Allocate for the fixed-len data.
// SAFETY: forward our requirement on `fixed_row_size` to `alloc_fixed_len`.
let inserted_offset = unsafe { dst.alloc_fixed_len(fixed_row_size) }
.expect("Failed to allocate fixed-len row in dst page after checking for available space");
// Copy all fixed-len data. We'll overwrite the var-len parts next.
let (mut dst_fixed, mut dst_var) = dst.split_fixed_var_mut();
let dst_row = dst_fixed.get_row_mut(inserted_offset, fixed_row_size);
dst_row.copy_from_slice(src_row);
// Copy var-len members into target.
// Fixup `VarLenRef`s in `dst_row` to point to the copied var-len objects.
//
// SAFETY: `src_row` is valid because it came from `self.iter_fixed_len_from`.
//
// Forward our safety requirements re: `var_len_visitor` to `visit_var_len`.
//
// SAFETY: Every `VarLenRef` in `src_vlr_iter` is initialized
// because to reach this point without violating any above safety invariants,
// it must have been allocated and its ref stored in the `src_row`.
let src_vlr_iter = unsafe { visit_var_len_assume_init(var_len_visitor, src_row) };
// SAFETY: forward our requirement on `var_len_visitor` to `visit_var_len_mut`.
let target_vlr_iter = unsafe { var_len_visitor.visit_var_len_mut(dst_row) };
for (src_vlr, target_vlr_slot) in src_vlr_iter.zip(target_vlr_iter) {
// SAFETY:
//
// - requirements of `visit_var_len_assume_init` were met,
// so we can assume that `src_vlr.first_granule` points to a valid granule or is NULL.
//
// - the call to `dst.has_space_for_row` above ensures
// that the allocation will not fail part-way through.
let target_vlr_fixup = unsafe { self.copy_var_len_into(src_vlr, &mut dst_var, blob_store) }
.expect("Failed to allocate var-len object in dst page after checking for available space");
target_vlr_slot.write(target_vlr_fixup);
}
true
}
/// Copy a var-len object `src_vlr` from `self` into `dst_var`,
/// and return the `VarLenRef` to the copy in `dst_var`.
///
/// If the `src_vlr` is empty,
/// i.e., has `first_granule.is_null()` and `length_in_bytes == 0`,
/// this will return `VarLenRef::NULL`.
///
/// # SAFETY:
///
/// - `src_vlr.first_granule` must point to a valid granule or be NULL.
///
/// - To avoid leaving dangling uninitialized allocations in `dst_var`,
/// `dst_var` must already be checked to have enough size to store `src_vlr`
/// using `Self::has_space_for_row`.
unsafe fn copy_var_len_into(
&self,
src_vlr: VarLenRef,
dst_var: &mut VarView<'_>,
blob_store: &mut dyn BlobStore,
) -> Result<VarLenRef, Error> {
// SAFETY: Caller promised that `src_vlr.first_granule` points to a valid granule is be NULL.
let mut iter = unsafe { self.iter_var_len_object(src_vlr.first_granule) };
// If the `src_vlr` is empty, don't copy anything, and return null.
let Some(mut src_chunk) = iter.next() else {
debug_assert!(src_vlr.length_in_bytes == 0);
return Ok(VarLenRef::NULL);
};
let mut dst_chunk = dst_var.alloc_granule()?;
let copied_head = dst_chunk;
// Weird-looking iterator so we can put the next-pointer into `copied_chunk`.
for next_src_chunk in iter {
// Allocate space for the next granule so we can initialize it in the next iteration.
let next_dst_chunk = dst_var.alloc_granule()?;
let data = src_chunk.data();
// Initialize `dst_chunk` with data and next-pointer.
//
// SAFETY:
// 1. `dst_chunk` is properly aligned as it came from `alloc_granule` either
// before the loop or in the previous iteration.
// This also ensures that both are in bounds
// of the page for `granule + granule + VarLenGranule::SIZE`.
//
// 2. `next_dst_chunk` will be initialized
// either in the next iteration or after the loop ends.
//
// 3. `dst_chunk` points to uninit data as the space was allocated before the loop
// or was `next_dst_chunk` in the previous iteration and hasn't been written to yet.
unsafe { dst_var.write_chunk_to_granule(data, data.len(), dst_chunk, next_dst_chunk) };
dst_chunk = next_dst_chunk;
src_chunk = next_src_chunk;
}
let data = src_chunk.data();
// The last granule has null as next-pointer.
//
// SAFETY:
// 1. `dst_chunk` is properly aligned as it came from `alloc_granule` either
// before the loop or in the previous iteration.
// This also ensures that both are in bounds
// of the page for `granule + granule + VarLenGranule::SIZE`.
//
// 2. `next` is NULL which is trivially init.
//
// 3. `dst_chunk` points to uninit data as the space was allocated before the loop
// or was `next_dst_chunk` in the previous iteration and hasn't been written to yet.
unsafe { dst_var.write_chunk_to_granule(data, data.len(), dst_chunk, PageOffset::VAR_LEN_NULL) };
// For a large blob object,
// notify the `blob_store` that we've taken a reference to the blob hash.
if src_vlr.is_large_blob() {
blob_store
.clone_blob(&src_chunk.blob_hash())
.expect("blob_store could not mark hash as used");
}
Ok(VarLenRef {
first_granule: copied_head,
length_in_bytes: src_vlr.length_in_bytes,
})
}
/// Make `self` empty, removing all rows from it and resetting the high water marks to zero.
pub fn clear(&mut self) {
self.header.clear();
}
/// Zeroes every byte of row data in this page.
///
/// This is only used for benchmarks right now.
#[doc(hidden)]
pub unsafe fn zero_data(&mut self) {
for byte in &mut self.row_data {
unsafe { ptr::write(byte.as_mut_ptr(), 0) };
}
}
}
/// An iterator over the `PageOffset`s of all present fixed-length rows in a [`Page`].
pub struct FixedLenRowsIter<'page> {
/// The fixed header of the page,
/// used to determine where the last fixed row is
/// and whether the fixed row slot is actually a fixed row.
header: &'page FixedHeader,
/// Location of the next fixed row slot, not necessarily the next row.
next_row: PageOffset,
/// The size of a row in bytes.
fixed_row_size: Size,
/// Stored so we can implement `Iterator::size_hint` efficiently.
rows_traversed_so_far: usize,
}
impl Iterator for FixedLenRowsIter<'_> {
type Item = PageOffset;
fn next(&mut self) -> Option<Self::Item> {
// TODO(perf): can we use the bitmap with count leading zeros (or similar)
// to skip ahead to the next present row?
// `BitVec` does not provide this interface,
// so we'd have to consider alternative crates or roll our own.
//
// If `next_row` points to a zero bit in the present? bitvec,
// it should be possible to do some masks and CLZs
// to determine that the next N bits in the bitvec are also zero,
// and thus to skip ahead to the next present row.
//
// First step: determine overhead.
// As long as we haven't reached the high water mark,
while self.next_row != self.header.last {
// Wish we could do `self.next_row.post_increment(1)`...
let this_row = self.next_row;
self.next_row += self.fixed_row_size;
// If `this_row` is present, i.e. has not been deleted,
// return it.
// Otherwise, continue the loop to search the next row.
if self.header.is_row_present(this_row, self.fixed_row_size) {
self.rows_traversed_so_far += 1;
return Some(this_row);
}
}
// When we reach the high water mark, there are no more rows.
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
let num_remaining = self.header.num_rows as usize - self.rows_traversed_so_far;
(num_remaining, Some(num_remaining))
}
}
/// An iterator over the [`VarLenGranule`]s in a particular [`VarLenRef`] in `page`.
///
/// Constructing a `VarLenGranulesIter` should be considered unsafe
/// because the initial `next_granule` must either be `NULL` or point to a valid [`VarLenGranule`].
///
/// Iterating over [`VarLenRef::NULL`] is safe and will immediately return `None`.
#[derive(Clone, Copy)]
struct VarLenGranulesIter<'page> {
/// The page to yield granules from.
page: &'page Page,
/// Location of the next granule in `page`.
/// Must either be `NULL` or point to a valid granule.
next_granule: PageOffset,
// TODO(perf,bikeshedding): store length and implement `Iterator::size_hint`?
}
impl<'page> Iterator for VarLenGranulesIter<'page> {
type Item = &'page VarLenGranule;
fn next(&mut self) -> Option<Self::Item> {
if self.next_granule.is_var_len_null() {
return None;
}
// SAFETY: By construction,
// the initial `next_granule` was promised to either be `NULL` or point to a valid granule.
// For a given granule, the same applies to its `.next()` granule.
// At this point, we've excluded `NULL`,
// so we know inductively that `next_granule` points to a valid granule, as required.
let granule: &VarLenGranule = unsafe { get_ref(&self.page.row_data, self.next_granule) };
self.next_granule = granule.header.next();
Some(granule)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
blob_store::NullBlobStore, layout::row_size_for_type, util::uninit_array, var_len::AlignedVarLenOffsets,
};
use proptest::{collection::vec, prelude::*};
use spacetimedb_sats::algebraic_value::ser::slice_assume_init_ref;
use std::slice::from_raw_parts;
fn as_uninit(slice: &[u8]) -> &Bytes {
let ptr = slice.as_ptr();
let len = slice.len();
unsafe { from_raw_parts(ptr.cast::<Byte>(), len) }
}
fn u64_row_size() -> Size {
let fixed_row_size = row_size_for_type::<u64>();
assert_eq!(fixed_row_size.len(), 8);
fixed_row_size
}
const U64_VL_VISITOR: AlignedVarLenOffsets<'_> = AlignedVarLenOffsets::from_offsets(&[]);
fn u64_var_len_visitor() -> &'static AlignedVarLenOffsets<'static> {
&U64_VL_VISITOR
}
fn insert_u64(page: &mut Page, val: u64) -> PageOffset {
let val_slice = val.to_le_bytes();
let val_slice = as_uninit(&val_slice);
unsafe { page.insert_row(val_slice, &[] as &[&[u8]], u64_var_len_visitor(), &mut NullBlobStore) }
.expect("Failed to insert first row")
}
fn insert_u64_drop(page: &mut Page, val: u64) {
insert_u64(page, val);
}
fn read_u64(page: &Page, offset: PageOffset) -> u64 {
let row = page.get_row_data(offset, u64_row_size());
u64::from_le_bytes(unsafe { slice_assume_init_ref(row) }.try_into().unwrap())
}
fn data_sub_n_vlg(n: usize) -> usize {
PageOffset::PAGE_END.idx() - (VarLenGranule::SIZE * n).len()
}
#[test]
fn insert_one_u64() {
let mut page = Page::new(u64_row_size());
let val: u64 = 0xa5a5_a5a5_a5a5_a5a5;
let offset = insert_u64(&mut page, val);
assert_eq!(offset.idx(), 0);
let row_val = read_u64(&page, offset);
assert_eq!(row_val, val);
}
fn insert_while(
page: &mut Page,
mut next_val: u64,
fixed_row_size: Size,
vl_num: usize,
mut insert: impl FnMut(&mut Page, u64),
) -> u64 {
while page.has_space_for_row(fixed_row_size, vl_num) {
insert(page, next_val);
next_val += 1;
}
next_val
}
#[test]
fn fill_then_iter_fixed_len_u64() {
let mut page = Page::new(u64_row_size());
let last_val = insert_while(&mut page, 0, u64_row_size(), 0, insert_u64_drop);
assert_eq!(last_val, (PageOffset::PAGE_END / u64_row_size()) as u64);
for (row_idx, expected_val) in page.iter_fixed_len(u64_row_size()).zip(0..last_val) {
let row_val = read_u64(&page, row_idx);
assert_eq!(
row_val, expected_val,
"row_val {:x} /= expected_val {:x}",
row_val, expected_val
);
}
}
#[test]
fn fill_delete_iter_fixed_len_u64() {
let mut page = Page::new(u64_row_size());
let mut odds: Vec<PageOffset> = Vec::new();
let last_val = insert_while(&mut page, 2, u64_row_size(), 0, |page, val| {
let offset = insert_u64(page, val);
if val % 2 == 1 {
odds.push(offset);
}
});
for row_offset in odds {
unsafe { page.delete_row(row_offset, u64_row_size(), u64_var_len_visitor(), &mut NullBlobStore) };
}
for (row_offset, expected_val) in page.iter_fixed_len(u64_row_size()).zip((2..last_val).step_by(2)) {
let found_val = read_u64(&page, row_offset);
assert_eq!(found_val, expected_val);
}
}
#[test]
/// After deleting a fixed-length row and then inserting a new fixed-length row,
/// the fixed-length high water mark must not change,
/// i.e. we must re-use memory from the deleted row to store the new insertion.
fn reuse_fixed_len_space() {
let mut page = Page::new(u64_row_size());
let offset_0 = insert_u64(&mut page, 0xa5a5a5a5_a5a5a5a5);
assert_eq!(offset_0.idx(), 0);
let offset_1 = insert_u64(&mut page, 0xbeefbeef_beefbeef);
assert_eq!(offset_1, u64_row_size());
assert_eq!(page.header.fixed.last, u64_row_size() * 2);
unsafe { page.delete_row(offset_0, u64_row_size(), u64_var_len_visitor(), &mut NullBlobStore) };
assert_eq!(page.header.fixed.last, u64_row_size() * 2);
let offset_0_again = insert_u64(&mut page, 0xffffffff_ffffffff);
assert_eq!(offset_0_again.idx(), 0);
assert_eq!(offset_0.idx(), offset_0_again.idx());
assert_eq!(page.header.fixed.last, u64_row_size() * 2);
}
const STR_ROW_SIZE: Size = row_size_for_type::<VarLenRef>();
const _: () = assert!(STR_ROW_SIZE.len() == mem::size_of::<VarLenRef>());
const STR_VL_VISITOR: AlignedVarLenOffsets<'_> = AlignedVarLenOffsets::from_offsets(&[0]);
fn str_var_len_visitor() -> &'static AlignedVarLenOffsets<'static> {
&STR_VL_VISITOR
}
fn insert_str(page: &mut Page, data: &[u8]) -> PageOffset {
let fixed_len_data = uninit_array::<u8, { STR_ROW_SIZE.len() }>();
unsafe { page.insert_row(&fixed_len_data, &[data], str_var_len_visitor(), &mut NullBlobStore) }
.expect("Failed to insert row")
}
fn read_str_ref(page: &Page, offset: PageOffset) -> VarLenRef {
*unsafe { get_ref(&page.row_data, offset) }
}
#[test]
fn insert_empty_str() {
let mut page = Page::new(STR_ROW_SIZE);
let offset = insert_str(&mut page, &[]);
let extracted = read_str_ref(&page, offset);
let mut granules_iter = unsafe { page.iter_var_len_object(extracted.first_granule) };
assert!(granules_iter.next().is_none());
}
proptest! {
#[test]
fn insert_one_short_str(data in vec(any::<u8>(), 1..VarLenGranule::DATA_SIZE)) {
let mut page = Page::new(STR_ROW_SIZE);
let offset = insert_str(&mut page, &data);
let extracted = read_str_ref(&page, offset);
let mut data_iter = unsafe { page.iter_vlo_data(extracted.first_granule) };
let (first, next) = (data_iter.next(), data_iter.next());
assert_eq!(first, Some(&*data));
assert_eq!(next, None);
}
#[test]
fn insert_one_long_str(data in vec(any::<u8>(), (VarLenGranule::OBJECT_SIZE_BLOB_THRESHOLD / 2)..VarLenGranule::OBJECT_SIZE_BLOB_THRESHOLD)) {
let mut page = Page::new(STR_ROW_SIZE);
let offset = insert_str(&mut page, &data);
let extracted = read_str_ref(&page, offset);
let mut data_iter = unsafe { page.iter_vlo_data(extracted.first_granule) };
let mut chunks_iter = data.chunks(VarLenGranule::DATA_SIZE);
for (i, (data, chunk)) in (&mut data_iter).zip(&mut chunks_iter).enumerate() {
assert_eq!(
data,
chunk,
"Chunk {} does not match. Left is found, right is expected.",
i,
);
}
// Both iterators must be finished, i.e. they must have the same length.
assert!(data_iter.next().is_none());
assert!(chunks_iter.next().is_none());
}
}
#[test]
fn reuse_var_len_space_no_fragmentation_concerns() {
let data_0 = b"Hello, world!";
let data_1 = b"How goes life?";
let data_2 = b"Glad to hear it.";
let mut page = Page::new(STR_ROW_SIZE);
let offset_0 = insert_str(&mut page, data_0);
let offset_1 = insert_str(&mut page, data_1);
assert_eq!(page.header.var.first.idx(), data_sub_n_vlg(2));
assert_ne!(offset_0.idx(), offset_1.idx());
let var_len_0 = read_str_ref(&page, offset_0);
assert_eq!(var_len_0.length_in_bytes as usize, data_0.len());
assert_eq!(var_len_0.first_granule.idx(), data_sub_n_vlg(1));
let var_len_1 = read_str_ref(&page, offset_1);
assert_eq!(var_len_1.length_in_bytes as usize, data_1.len());
assert_eq!(var_len_1.first_granule.idx(), data_sub_n_vlg(2));
unsafe { page.delete_row(offset_0, STR_ROW_SIZE, str_var_len_visitor(), &mut NullBlobStore) };
let offset_2 = insert_str(&mut page, data_2);
assert_eq!(page.header.var.first.idx(), data_sub_n_vlg(2));
assert_eq!(offset_0.idx(), offset_2.idx());
let var_len_2 = read_str_ref(&page, offset_2);
assert_eq!(var_len_2.length_in_bytes as usize, data_2.len());
assert_eq!(var_len_2.first_granule.idx(), var_len_0.first_granule.idx());
}
#[test]
fn free_var_len_obj_multiple_granules() {
let mut page = Page::new(STR_ROW_SIZE);
// Allocate a 4-granule var-len object.
let data_0 = [0xa5u8].repeat(VarLenGranule::DATA_SIZE * 4);
let offset_0 = insert_str(&mut page, &data_0);
let var_len_0 = read_str_ref(&page, offset_0);
// Read the addresses of its var-len granules.
let granules_0 = unsafe { page.iter_var_len_object(var_len_0.first_granule) }
.map(|granule| granule as *const VarLenGranule as usize)
.collect::<Vec<_>>();
// Sanity checks: we have allocated 4 granules.
assert_eq!(granules_0.len(), 4);
assert_eq!(page.header.var.first.idx(), data_sub_n_vlg(4));
// Delete the row.
unsafe { page.delete_row(offset_0, STR_ROW_SIZE, str_var_len_visitor(), &mut NullBlobStore) };
// Allocate a new 4-granule var-len object.
// This should use the same storage as the original row.
let data_1 = [0xffu8].repeat(VarLenGranule::DATA_SIZE * 4);
let offset_1 = insert_str(&mut page, &data_1);
let var_len_1 = read_str_ref(&page, offset_1);
// Read the addresses of the new allocation's var-len granules.
let granules_1 = unsafe { page.iter_var_len_object(var_len_1.first_granule) }
.map(|granule| granule as *const VarLenGranule as usize)
.collect::<Vec<_>>();
// Sanity check: the new allocation is also 4 granules.
assert_eq!(granules_1.len(), 4);
for granule in granules_1.iter().copied() {
// The new var-len allocation must contain all the same granules by address
// as the old var-len allocation.
assert!(granules_0.iter().copied().any(|other_granule| other_granule == granule));
}
// The var-len high water mark must not have moved.
assert_eq!(page.header.var.first.idx(), data_sub_n_vlg(4));
}
#[test]
fn reuse_var_len_space_avoid_fragmentation() {
let data_0 = &[0xa5u8];
let data_1 = &[0xffu8];
let data_2 = [0x11u8].repeat(VarLenGranule::DATA_SIZE + 1);
let data_2 = data_2.as_ref();
let mut page = Page::new(STR_ROW_SIZE);
let offset_0 = insert_str(&mut page, data_0);
let _offset_1 = insert_str(&mut page, data_1);
assert_eq!(page.header.var.first.idx(), data_sub_n_vlg(2));
unsafe { page.delete_row(offset_0, STR_ROW_SIZE, str_var_len_visitor(), &mut NullBlobStore) };
let offset_2 = insert_str(&mut page, data_2);
assert_eq!(page.header.var.first.idx(), data_sub_n_vlg(3));
let var_len_2 = read_str_ref(&page, offset_2);
let mut data_iter = unsafe { page.iter_vlo_data(var_len_2.first_granule) };
let mut chunks_iter = data_2.chunks(VarLenGranule::DATA_SIZE);
for (i, (data, chunk)) in (&mut data_iter).zip(&mut chunks_iter).enumerate() {
assert_eq!(
data, chunk,
"Chunk {} does not match. Left is found, right is expected.",
i,
);
}
// Both iterators must be finished, i.e. they must have the same length.
assert!(data_iter.next().is_none());
assert!(chunks_iter.next().is_none());
}
fn check_u64_in_str(page: &Page, row_idx: PageOffset, expected_val: u64) {
let vlr = read_str_ref(page, row_idx);
let mut var_len_iter = unsafe { page.iter_vlo_data(vlr.first_granule) };
let data = var_len_iter.next().unwrap();
assert!(var_len_iter.next().is_none());
assert_eq!(data.len(), mem::size_of::<u64>());
let val = u64::from_le_bytes(data.try_into().unwrap());
assert_eq!(val, expected_val);
}
#[test]
fn fill_then_iter_var_len_str() {
let mut page = Page::new(STR_ROW_SIZE);
let last_val = insert_while(&mut page, 0, STR_ROW_SIZE, 1, |page, val| {
insert_str(page, &val.to_le_bytes());
});
let size_per_row = STR_ROW_SIZE + VarLenGranule::SIZE;
assert_eq!(last_val, (PageOffset::PAGE_END / size_per_row) as u64);
for (row_idx, expected_val) in page.iter_fixed_len(STR_ROW_SIZE).zip(0..last_val) {
check_u64_in_str(&page, row_idx, expected_val);
}
}
#[test]
fn fill_delete_iter_var_len_str() {
let mut page = Page::new(STR_ROW_SIZE);
let mut odds = Vec::new();
let last_val = insert_while(&mut page, 0, STR_ROW_SIZE, 1, |page, val| {
let offset = insert_str(page, &val.to_le_bytes());
if val % 2 == 1 {
odds.push(offset);
}
});
let size_per_row = STR_ROW_SIZE + VarLenGranule::SIZE;
let num_rows_inserted = (PageOffset::PAGE_END / size_per_row) as u64;
assert_eq!(last_val, num_rows_inserted);
for row_offset in odds {
unsafe { page.delete_row(row_offset, STR_ROW_SIZE, str_var_len_visitor(), &mut NullBlobStore) };
}
let num_rows_retained = num_rows_inserted.div_ceil(2);
let num_rows_removed = num_rows_inserted / 2;
assert_eq!(page.header.fixed.num_rows as u64, num_rows_retained);
assert_eq!(page.header.var.freelist_len as u64, num_rows_removed);
for (row_idx, expected_val) in page.iter_fixed_len(STR_ROW_SIZE).zip((0..last_val).step_by(2)) {
check_u64_in_str(&page, row_idx, expected_val);
}
}
}