1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
//! Provides the functions [`write_row_to_pages(pages, blob_store, ty, val)`]
//! and [`write_row_to_page(page, blob_store, visitor, ty, val)`]
//! which write `val: ProductValue` typed at `ty` to `page` and `pages` respectively.
use super::{
blob_store::BlobStore,
indexes::{Bytes, PageOffset, RowPointer, SquashedOffset},
layout::{
align_to, bsatn_len, required_var_len_granules_for_row, AlgebraicTypeLayout, HasLayout, ProductTypeLayout,
RowTypeLayout, SumTypeLayout, VarLenType,
},
page::{GranuleOffsetIter, Page, VarView},
pages::Pages,
util::{maybe_uninit_write_slice, range_move},
var_len::{visit_var_len_assume_init, VarLenGranule, VarLenMembers, VarLenRef},
};
use spacetimedb_sats::{bsatn::to_writer, buffer::BufWriter, AlgebraicType, AlgebraicValue, ProductValue, SumValue};
use thiserror::Error;
#[derive(Error, Debug)]
pub enum Error {
#[error("Expected a value of type {0:?}, but found {1:?}")]
WrongType(AlgebraicType, AlgebraicValue),
#[error(transparent)]
PageError(#[from] super::page::Error),
#[error(transparent)]
PagesError(#[from] super::pages::Error),
}
/// Writes `row` typed at `ty` to `pages`
/// using `blob_store` as needed to write large blobs.
///
/// Panics if `val` is not of type `ty`.
///
/// # Safety
///
/// `pages` must be specialized to store rows of `ty`.
/// This includes that its `visitor` must be prepared to visit var-len members within `ty`,
/// and must do so in the same order as a `VarLenVisitorProgram` for `ty` would,
/// i.e. by monotonically increasing offsets.
pub unsafe fn write_row_to_pages(
pages: &mut Pages,
visitor: &impl VarLenMembers,
blob_store: &mut dyn BlobStore,
ty: &RowTypeLayout,
val: &ProductValue,
squashed_offset: SquashedOffset,
) -> Result<RowPointer, Error> {
let num_granules = required_var_len_granules_for_row(val);
match pages.with_page_to_insert_row(ty.size(), num_granules, |page| {
// SAFETY:
// - Caller promised that `pages` is suitable for storing instances of `ty`
// so `page` is also suitable.
// - Caller promised that `visitor` is prepared to visit for `ty`
// and in the same order as a `VarLenVisitorProgram` for `ty` would.
// - `visitor` came from `pages` which we can trust to visit in the right order.
unsafe { write_row_to_page(page, blob_store, visitor, ty, val) }
})? {
(page, Ok(offset)) => Ok(RowPointer::new(false, page, offset, squashed_offset)),
(_, Err(e)) => Err(e),
}
}
/// Writes `row` typed at `ty` to `page`
/// using `blob_store` as needed to write large blobs
/// and `visitor` to fixup var-len pointers in the fixed-len row part.
///
/// Panics if `val` is not of type `ty`.
///
/// # Safety
///
/// - `page` must be prepared to store instances of `ty`.
///
/// - `visitor` must be prepared to visit var-len members within `ty`,
/// and must do so in the same order as a `VarLenVisitorProgram` for `ty` would,
/// i.e. by monotonically increasing offsets.
///
/// - `page` must use a var-len visitor which visits the same var-len members in the same order.
pub unsafe fn write_row_to_page(
page: &mut Page,
blob_store: &mut dyn BlobStore,
visitor: &impl VarLenMembers,
ty: &RowTypeLayout,
val: &ProductValue,
) -> Result<PageOffset, Error> {
let fixed_row_size = ty.size();
// SAFETY: We've used the right `row_size` and we trust that others have too.
// `RowTypeLayout` also ensures that we satisfy the minimum row size.
let fixed_offset = unsafe { page.alloc_fixed_len(fixed_row_size)? };
// Create the context for writing to `page`.
let (mut fixed, var_view) = page.split_fixed_var_mut();
let mut serialized = BflatnSerializedRowBuffer {
fixed_buf: fixed.get_row_mut(fixed_offset, fixed_row_size),
curr_offset: 0,
var_view,
last_allocated_var_len_index: 0,
large_blob_insertions: Vec::new(),
};
// Write the row to the page. Roll back on any failure.
if let Err(e) = serialized.write_product(ty.product(), val) {
// SAFETY: The `visitor` is proper for the row type per caller requirements.
unsafe { serialized.roll_back_var_len_allocations(visitor) };
// SAFETY:
// - `fixed_offset` came from `alloc_fixed_len` so it is in bounds of `page`.
// - `RowTypeLayout::size()` ensures `fixed_offset` is properly aligned for `FreeCellRef`.
unsafe { fixed.free(fixed_offset, fixed_row_size) };
return Err(e);
}
// Haven't stored large blobs or init those granules with blob hashes yet, so do it now.
serialized.write_large_blobs(blob_store);
Ok(fixed_offset)
}
/// The writing / serialization context used by the function [`write_row_to_page`].
struct BflatnSerializedRowBuffer<'page> {
/// The work-in-progress fixed part of the row,
/// allocated inside the page.
fixed_buf: &'page mut Bytes,
/// The current offset into `fixed_buf` at which we are writing.
///
/// The various writing methods will advance `curr_offset`.
curr_offset: usize,
/// The number of inserted var-len objects to the page.
last_allocated_var_len_index: usize,
/// The deferred large-blob insertions
/// with `Vec<u8>` being the blob bytes to insert to the blob store
/// and the `VarLenRef` being the destination to write the blob hash.
large_blob_insertions: Vec<(VarLenRef, Vec<u8>)>,
/// The mutable view of the variable section of the page.
var_view: VarView<'page>,
}
impl BflatnSerializedRowBuffer<'_> {
/// Rolls back all the var-len allocations made when writing the row.
///
/// # Safety
///
/// The `visitor` must be proper for the row type.
unsafe fn roll_back_var_len_allocations(&mut self, visitor: &impl VarLenMembers) {
// SAFETY:
// - `fixed_buf` is properly aligned for the row type
// and `fixed_buf.len()` matches exactly the size of the row type.
// - `fixed_buf`'s `VarLenRef`s are initialized up to `last_allocated_var_len_index`.
// - `visitor` is proper for the row type.
let visitor_iter = unsafe { visit_var_len_assume_init(visitor, self.fixed_buf) };
for vlr in visitor_iter.take(self.last_allocated_var_len_index) {
// SAFETY: The `vlr` came from the allocation in `write_var_len_obj`
// which wrote it to the fixed part using `write_var_len_ref`.
// Thus, it points to a valid `VarLenGranule`.
unsafe { self.var_view.free_object_ignore_blob(vlr) };
}
}
/// Insert all large blobs into `blob_store` and their hashes to their granules.
fn write_large_blobs(mut self, blob_store: &mut dyn BlobStore) {
for (vlr, value) in self.large_blob_insertions {
// SAFETY: `vlr` was given to us by `alloc_for_slice`
// so it is properly aligned for a `VarLenGranule` and in bounds of the page.
// However, as it was added to `self.large_blob_insertion`, it is also uninit.
unsafe {
self.var_view.write_large_blob_hash_to_granule(blob_store, &value, vlr);
}
}
}
/// Write an `val`, an [`AlgebraicValue`], typed at `ty`, to the buffer.
fn write_value(&mut self, ty: &AlgebraicTypeLayout, val: &AlgebraicValue) -> Result<(), Error> {
debug_assert_eq!(
self.curr_offset,
align_to(self.curr_offset, ty.align()),
"curr_offset {} insufficiently aligned for type {:#?}",
self.curr_offset,
val,
);
match (ty, val) {
// For sums, select the type based on the sum tag,
// write the variant data given the variant type,
// and finally write the tag.
(AlgebraicTypeLayout::Sum(ty), AlgebraicValue::Sum(val)) => self.write_sum(ty, val)?,
// For products, write every element in order.
(AlgebraicTypeLayout::Product(ty), AlgebraicValue::Product(val)) => self.write_product(ty, val)?,
// For primitive types, write their contents by LE-encoding.
(&AlgebraicTypeLayout::Bool, AlgebraicValue::Bool(val)) => self.write_bool(*val),
// Integer types:
(&AlgebraicTypeLayout::I8, AlgebraicValue::I8(val)) => self.write_i8(*val),
(&AlgebraicTypeLayout::U8, AlgebraicValue::U8(val)) => self.write_u8(*val),
(&AlgebraicTypeLayout::I16, AlgebraicValue::I16(val)) => self.write_i16(*val),
(&AlgebraicTypeLayout::U16, AlgebraicValue::U16(val)) => self.write_u16(*val),
(&AlgebraicTypeLayout::I32, AlgebraicValue::I32(val)) => self.write_i32(*val),
(&AlgebraicTypeLayout::U32, AlgebraicValue::U32(val)) => self.write_u32(*val),
(&AlgebraicTypeLayout::I64, AlgebraicValue::I64(val)) => self.write_i64(*val),
(&AlgebraicTypeLayout::U64, AlgebraicValue::U64(val)) => self.write_u64(*val),
(&AlgebraicTypeLayout::I128, AlgebraicValue::I128(val)) => self.write_i128(val.0),
(&AlgebraicTypeLayout::U128, AlgebraicValue::U128(val)) => self.write_u128(val.0),
// Float types:
(&AlgebraicTypeLayout::F32, AlgebraicValue::F32(val)) => self.write_f32((*val).into()),
(&AlgebraicTypeLayout::F64, AlgebraicValue::F64(val)) => self.write_f64((*val).into()),
// For strings, we reserve space for a `VarLenRef`
// and push the bytes as a var-len object.
(&AlgebraicTypeLayout::String, AlgebraicValue::String(val)) => self.write_string(val)?,
// For array and maps, we reserve space for a `VarLenRef`
// and push the bytes, after BSATN encoding, as a var-len object.
(AlgebraicTypeLayout::VarLen(VarLenType::Array(_)), val @ AlgebraicValue::Array(_))
| (AlgebraicTypeLayout::VarLen(VarLenType::Map(_)), val @ AlgebraicValue::Map(_)) => {
self.write_av_bsatn(val)?
}
// If the type doesn't match the value, return an error.
(ty, val) => Err(Error::WrongType(ty.algebraic_type(), val.clone()))?,
}
Ok(())
}
/// Write a `val`, a [`SumValue`], typed at `ty`, to the buffer.
fn write_sum(&mut self, ty: &SumTypeLayout, val: &SumValue) -> Result<(), Error> {
// Extract sum value components and variant type, and offsets.
let SumValue { tag, ref value } = *val;
let variant_ty = &ty.variants[tag as usize];
let variant_offset = self.curr_offset + ty.offset_of_variant_data(tag);
let tag_offset = self.curr_offset + ty.offset_of_tag();
// Write the variant value at `variant_offset`.
self.curr_offset = variant_offset;
self.write_value(&variant_ty.ty, value)?;
// Write the variant value at `tag_offset`.
self.curr_offset = tag_offset;
self.write_u8(tag);
Ok(())
}
/// Write an `val`, a [`ProductValue`], typed at `ty`, to the buffer.
fn write_product(&mut self, ty: &ProductTypeLayout, val: &ProductValue) -> Result<(), Error> {
// `Iterator::zip` silently drops elements if the two iterators have different lengths,
// so we need to check that our `ProductValue` has the same number of elements
// as our `ProductTypeLayout` to be sure it's typed correctly.
// Otherwise, if the value is too long, we'll discard its fields (whatever),
// or if it's too long, we'll leave some fields in the page uninit (very bad).
if ty.elements.len() != val.elements.len() {
return Err(Error::WrongType(
ty.algebraic_type(),
AlgebraicValue::Product(val.clone()),
));
}
let base_offset = self.curr_offset;
for (elt_ty, elt) in ty.elements.iter().zip(val.elements.iter()) {
self.curr_offset = base_offset + elt_ty.offset as usize;
self.write_value(&elt_ty.ty, elt)?;
}
Ok(())
}
/// Write the string `str` to the var-len section
/// and a `VarLenRef` to the fixed buffer and advance the `curr_offset`.
fn write_string(&mut self, val: &str) -> Result<(), Error> {
let val = val.as_bytes();
// Write `val` to the page. The handle is `vlr`.
let (vlr, in_blob) = self.var_view.alloc_for_slice(val)?;
if in_blob {
self.defer_insert_large_blob(vlr, val.to_vec());
}
// Write `vlr` to the fixed part.
self.write_var_len_ref(vlr);
Ok(())
}
/// Write `val` BSATN-encoded to var-len section
/// and a `VarLenRef` to the fixed buffer and advance the `curr_offset`.
fn write_av_bsatn(&mut self, val: &AlgebraicValue) -> Result<(), Error> {
// Allocate space.
let len_in_bytes = bsatn_len(val);
let (vlr, in_blob) = self.var_view.alloc_for_len(len_in_bytes)?;
// Write `vlr` to the fixed part.
self.write_var_len_ref(vlr);
if in_blob {
// We won't be storing the large blob in the page,
// so no point in writing the blob directly to the page.
let mut bytes = Vec::with_capacity(len_in_bytes);
val.encode(&mut bytes);
self.defer_insert_large_blob(vlr, bytes);
} else {
// Write directly to the page.
// SAFETY: `vlr.first_granule` points to a granule
// even though the granule's data is uninit as of yet.
let iter = unsafe { self.var_view.granule_offset_iter(vlr.first_granule) };
let mut writer = GranuleBufWriter { buf: None, iter };
to_writer(&mut writer, val).unwrap();
}
/// A `BufWriter` that writes directly to a page.
struct GranuleBufWriter<'vv, 'page> {
/// The offset to the granule being written to
/// and how much has been written to it already.
buf: Option<(PageOffset, usize)>,
/// The iterator for the offsets to all the granule we'll write to.
iter: GranuleOffsetIter<'page, 'vv>,
}
impl BufWriter for GranuleBufWriter<'_, '_> {
fn put_slice(&mut self, mut slice: &[u8]) {
while !slice.is_empty() {
let (offset, start) = match self.buf.take() {
// Still have some to write to this granule.
Some(buf @ (_, start)) if start < VarLenGranule::DATA_SIZE => buf,
// First granule or the current one is full.
_ => {
let next = self.iter.next();
debug_assert!(next.is_some());
// SAFETY: The iterator length is exactly such that
// `next.is_none() == slice.is_empty()`.
let next = unsafe { next.unwrap_unchecked() };
(next, 0)
}
};
// Derive how much we can add to this granule
// and only take that much from `slice`.
let capacity_remains = VarLenGranule::DATA_SIZE - start;
debug_assert!(capacity_remains > 0);
let extend_len = capacity_remains.min(slice.len());
let (extend_with, rest) = slice.split_at(extend_len);
// The section of the granule data to write to.
// SAFETY:
// - `offset` came from `self.iter`, which only yields valid offsets.
// - `start < VarLenGranule::DATA_SIZE` was ensured above.
let write_to = unsafe { self.iter.get_mut_data(offset, start) };
// Write to the granule.
for (to, byte) in write_to.iter_mut().zip(extend_with) {
to.write(*byte);
}
slice = rest;
self.buf = Some((offset, start + extend_len));
}
}
}
Ok(())
}
/// Write a `VarLenRef` to the fixed buffer and advance the `curr_offset`.
fn write_var_len_ref(&mut self, val: VarLenRef) {
self.write_u16(val.length_in_bytes);
self.write_u16(val.first_granule.0);
// Keep track of how many var len objects we've added so far
// so that we can free them on failure.
self.last_allocated_var_len_index += 1;
}
/// Defers the insertion of a large blob to the blob store as well as writing the hash to the granule.
fn defer_insert_large_blob(&mut self, vlr: VarLenRef, obj_bytes: Vec<u8>) {
self.large_blob_insertions.push((vlr, obj_bytes));
}
/// Write `bytes: &[u8; N]` starting at the current offset
/// and advance the offset by `N`.
fn write_bytes<const N: usize>(&mut self, bytes: &[u8; N]) {
maybe_uninit_write_slice(&mut self.fixed_buf[range_move(0..N, self.curr_offset)], bytes);
self.curr_offset += N;
}
/// Write a `u8` to the fixed buffer and advance the `curr_offset`.
fn write_u8(&mut self, val: u8) {
self.write_bytes(&[val]);
}
/// Write an `i8` to the fixed buffer and advance the `curr_offset`.
fn write_i8(&mut self, val: i8) {
self.write_u8(val as u8);
}
/// Write a `bool` to the fixed buffer and advance the `curr_offset`.
fn write_bool(&mut self, val: bool) {
self.write_u8(val as u8);
}
/// Write a `u16` to the fixed buffer and advance the `curr_offset`.
fn write_u16(&mut self, val: u16) {
self.write_bytes(&val.to_le_bytes());
}
/// Write an `i16` to the fixed buffer and advance the `curr_offset`.
fn write_i16(&mut self, val: i16) {
self.write_bytes(&val.to_le_bytes());
}
/// Write a `u32` to the fixed buffer and advance the `curr_offset`.
fn write_u32(&mut self, val: u32) {
self.write_bytes(&val.to_le_bytes());
}
/// Write an `i32` to the fixed buffer and advance the `curr_offset`.
fn write_i32(&mut self, val: i32) {
self.write_bytes(&val.to_le_bytes());
}
/// Write a `u64` to the fixed buffer and advance the `curr_offset`.
fn write_u64(&mut self, val: u64) {
self.write_bytes(&val.to_le_bytes());
}
/// Write an `i64` to the fixed buffer and advance the `curr_offset`.
fn write_i64(&mut self, val: i64) {
self.write_bytes(&val.to_le_bytes());
}
/// Write a `u128` to the fixed buffer and advance the `curr_offset`.
fn write_u128(&mut self, val: u128) {
self.write_bytes(&val.to_le_bytes());
}
/// Write an `i128` to the fixed buffer and advance the `curr_offset`.
fn write_i128(&mut self, val: i128) {
self.write_bytes(&val.to_le_bytes());
}
/// Write a `f32` to the fixed buffer and advance the `curr_offset`.
fn write_f32(&mut self, val: f32) {
self.write_bytes(&val.to_le_bytes());
}
/// Write a `f64` to the fixed buffer and advance the `curr_offset`.
fn write_f64(&mut self, val: f64) {
self.write_bytes(&val.to_le_bytes());
}
}
#[cfg(test)]
pub mod test {
use super::*;
use crate::{
bflatn_from::serialize_row_from_page, blob_store::HashMapBlobStore, row_type_visitor::row_type_visitor,
};
use proptest::{prelude::*, prop_assert_eq, proptest};
use spacetimedb_sats::algebraic_value::ser::ValueSerializer;
use spacetimedb_sats::proptest::generate_typed_row;
proptest! {
#![proptest_config(ProptestConfig::with_cases(2048))]
#[test]
fn av_serde_round_trip_through_page((ty, val) in generate_typed_row()) {
let ty: RowTypeLayout = ty.into();
let mut page = Page::new(ty.size());
let visitor = row_type_visitor(&ty);
let blob_store = &mut HashMapBlobStore::default();
let offset = unsafe { write_row_to_page(&mut page, blob_store, &visitor, &ty, &val).unwrap() };
let read_val = unsafe { serialize_row_from_page(ValueSerializer, &page, blob_store, offset, &ty) }
.unwrap().into_product().unwrap();
prop_assert_eq!(val, read_val);
}
}
}