1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
//! Provides the definitions of [`VarLenRef`], [`VarLenGranule`], and [`VarLenMembers`].
//!
//! We allocate variable-length objects within rows, e.g. strings and arrays,
//! separately from the fixed-length parts of rows.
//! The fixed-length part of the page starts at the top (offset 0) and grows downward,
//! while the var-length part of the page starts at the bottom (largest offset) and grows upward.
//!
//! Within the fixed-length part of the row, each var-len object is given a [`VarLenRef`],
//! which allows a mutator to locate the var-len object.
//!
//! The var-length objects are BSATN-encoded to produce a bytestring
//! (except strings, which are stored directly as UTF-8 bytestrings),
//! and stored in a linked list of 64-byte "granules,"
//! each of which has a 2-byte header and up to 62 bytes of data.
//! This means that var-length objects never store padding bytes;
//! every byte in a var-len object at an index less than the object's length
//! will be initialized.
//!
//! At various points in the row's lifecycle,
//! we must visit all of the `VarLenRef`s within the row,
//! e.g. to fix-up pointers when copying a row into a new page.
//! This process is driven by a `VarLenMembers` visitor.
//!
//! This file defines the representation of the linked list of granules [`VarLenGranule`],
//! the [`VarLenRef`] pointers to variable-length objects,
//! and the trait [`VarLenMembers`] which visits `VarLenRef`s within a fixed-length row.
//!
//! The broad strokes of var-len allocation are described in the Mem Arch Redesign proposal,
// Intentionally not a link, in case we ever want to publish this crate.
//! `../../../../proposals/0001-mem-arch-redesign/mem-arch-redesign.md`.
//! Note that the proposal uses the words "blocks" or "chunks" where we use "granules."
use super::{
blob_store::BlobHash,
indexes::{Byte, Bytes, PageOffset, Size},
util::slice_assume_init_ref,
};
use crate::{static_assert_align, static_assert_size};
use core::iter;
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
/// Reference to var-len object within a page.
// TODO: make this larger and do short-string optimization?
// - Or store a few elts inline and then a `VarLenRef`?
// - Or first store `VarLenRef` that records num inline elements (remaining inline are uninit)
// (bitfield; only need 10 bits for `len_in_bytes`)?
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[repr(C)]
pub struct VarLenRef {
/// The length of the var-len object in bytes.
/// When `self.is_large_blob()` returns true,
/// this is not the proper length of the object.
/// Rather, the blob store must be consulted for the true length.
pub length_in_bytes: u16,
/// The offset to the first granule containing some of the object's data
/// as well a pointer to the next granule.
pub first_granule: PageOffset,
}
// Implementation of `VarLenMembers` visitors depend on
// `size = 4` and `align = 2` of `VarLenRef`.
static_assert_size!(VarLenRef, 4);
static_assert_align!(VarLenRef, 2);
impl VarLenRef {
/// Does this refer to a large blob object
/// where `self.first_granule` is a blob hash?
#[inline]
pub const fn is_large_blob(self) -> bool {
self.length_in_bytes == Self::LARGE_BLOB_SENTINEL
}
/// The sentinel for a var-len ref to a large blob.
pub const LARGE_BLOB_SENTINEL: u16 = u16::MAX;
/// Returns a var-len ref for a large blob object.
#[inline]
pub const fn large_blob(first_granule: PageOffset) -> Self {
Self {
length_in_bytes: Self::LARGE_BLOB_SENTINEL,
first_granule,
}
}
/// Returns the number of granules this var-len ref uses in it page.
#[inline]
pub const fn granules_used(&self) -> usize {
VarLenGranule::bytes_to_granules(self.length_in_bytes as usize).0
}
/// Is this reference NULL, i.e. empty?
#[inline]
pub const fn is_null(self) -> bool {
self.first_granule.is_var_len_null()
}
/// The NULL var-len reference for empty variable components.
///
/// A null `VarLenRef` can occur when a row has no var-len component
/// or needs to point to one that is empty.
pub const NULL: Self = Self {
length_in_bytes: 0,
first_granule: PageOffset::VAR_LEN_NULL,
};
}
const _BLOB_SENTINEL_MORE_THAN_MAX_OBJ_SIZE: () =
assert!(VarLenGranule::OBJECT_SIZE_BLOB_THRESHOLD < VarLenRef::LARGE_BLOB_SENTINEL as usize);
const _GRANULES_USED_FOR_BLOB_IS_CONSISTENT: () = {
let vlr = VarLenRef::large_blob(PageOffset::VAR_LEN_NULL);
assert!(vlr.is_large_blob() == (vlr.granules_used() == 1));
};
/// Returns whether `offset` is properly aligned for storing a [`VarLenGranule`].
pub fn is_granule_offset_aligned(offset: PageOffset) -> bool {
offset.0 == offset.0 & VarLenGranuleHeader::NEXT_BITMASK
}
/// The header of a [`VarLenGranule`] storing
/// - (low 6 bits) the number of bytes the granule contains
/// - (high 10 bits) the offset of the next granule in the linked-list
/// used to store an object in variable storage.
///
/// For efficiency, this data is packed as a bitfield
/// in a `u16` with bits used per above.
#[derive(Copy, Clone)]
pub struct VarLenGranuleHeader(u16);
impl VarLenGranuleHeader {
/// The total size of a variable granule's header in bytes.
const SIZE: usize = mem::size_of::<Self>();
/// The number of bits used to store the `len` of a [`VarLenGranule`] is 6.
const LEN_BITS: u16 = 6;
/// The `len` of a [`VarLenGranule`] is stored in the low 6 bits.
///
/// The 6 bits are enough to store at most `2^6` (`64`).
/// However, a granule can never store more than [`VarLenGranule::DATA_SIZE`] (`62`),
/// which is `2` less than `2^6`.
///
/// We will also never allocate a `VarLenGranule` with len 0.
///
/// This means that the `len` field of a `VarLenGranule` has two dead states,
/// 0 and 63. We could use these as sentinels,
/// but currently have no use for them.
const LEN_BITMASK: u16 = (1 << Self::LEN_BITS) - 1;
/// The [`LEN_BITMASK`] will preserve all granule lengths possible.
#[allow(clippy::assertions_on_constants)]
const _ASSERT_LEN_BITMASK_FITS_ALL_POSSIBLE_GRANULE_LENGTHS: () =
assert!(VarLenGranule::DATA_SIZE <= Self::LEN_BITMASK as usize);
// The `next` of a `VarLenGranule` is stored in the high 10 bits.
// It is not shifted; the low 6 bits will always be 0 due to alignment.
const NEXT_BITMASK: u16 = !Self::LEN_BITMASK;
/// Returns a new header with the length component changed to `len`.
fn with_len(self, len: u8) -> Self {
// Zero any previous `len` field.
let mut new = self;
new.0 &= !Self::LEN_BITMASK;
// Ensure that the `len` doesn't overflow into the `next`.
let capped_len = (len as u16) & Self::LEN_BITMASK;
debug_assert_eq!(
capped_len, len as u16,
"Len {} overflows the length of a `VarLenGranule`",
len
);
// Insert the truncated `len`.
new.0 |= capped_len;
debug_assert_eq!(self.next(), new.next(), "`set_len` has modified `next`");
debug_assert_eq!(
new.len() as u16,
capped_len,
"`set_len` has not inserted the correct `len`: expected {:x}, found {:x}",
capped_len,
new.len()
);
new
}
/// Returns a new header with the next-granule component changed to `next`.
fn with_next(self, PageOffset(next): PageOffset) -> Self {
let mut new = self;
// Zero any previous `next` field.
new.0 &= !Self::NEXT_BITMASK;
// Ensure that the `next` is aligned,
// and therefore doesn't overwrite any of the `len`.
let aligned_next = next & Self::NEXT_BITMASK;
debug_assert_eq!(aligned_next, next, "Next {:x} is unaligned", next);
// Insert the aligned `next`.
new.0 |= aligned_next;
debug_assert_eq!(self.len(), new.len(), "`set_next` has modified `len`");
debug_assert_eq!(
new.next().0,
aligned_next,
"`set_next` has not inserted the correct `next`"
);
new
}
/// Returns a new header for a granule storing `len` bytes
/// and with the next granule in the list located `next`.
pub fn new(len: u8, next: PageOffset) -> Self {
Self(0).with_len(len).with_next(next)
}
/// Returns the number of bytes the granule contains.
const fn len(&self) -> u8 {
(self.0 & Self::LEN_BITMASK) as u8
}
/// Returns the offset / Address of the next granule in the linked-list.
pub const fn next(&self) -> PageOffset {
PageOffset(self.0 & Self::NEXT_BITMASK)
}
}
/// Each variable length object in a page is stored as a linked-list of chunks.
/// These chunks are called *granules* and they can store up to 62 bytes of `data`.
/// Additionally, 2 bytes are used for the [`header: VarLenGranuleHeader`](VarLenGranuleHeader).
#[repr(C)] // Required for a stable ABI.
#[repr(align(64))] // Alignment must be same as `VarLenGranule::SIZE`.
pub struct VarLenGranule {
/// The header of the granule, containing the length and the next-cell offset.
pub header: VarLenGranuleHeader,
/// The data storing some part, or whole, of the var-len object.
pub data: [Byte; Self::DATA_SIZE],
}
impl VarLenGranule {
/// The total size of a variable length granule in bytes.
pub const SIZE: Size = Size(64);
/// The size, in bytes, of the data section of a variable length granule.
pub const DATA_SIZE: usize = Self::SIZE.len() - VarLenGranuleHeader::SIZE;
/// The max number of granules an object can use
/// before being put into large blob storage.
pub const OBJECT_MAX_GRANULES_BEFORE_BLOB: usize = 16;
/// The max size of an object before being put into large blob storage.
pub const OBJECT_SIZE_BLOB_THRESHOLD: usize = Self::DATA_SIZE * Self::OBJECT_MAX_GRANULES_BEFORE_BLOB;
/// Returns the number of granules that would fit into `available_len`.
pub const fn space_to_granules(available_len: Size) -> usize {
// Floor division (the default div operator) here
// to ensure we don't allocate e.g., a 64-byte granule in a 63-byte space.
available_len.len() / Self::SIZE.len()
}
/// Returns the number of granules needed to store an object of `len_in_bytes` in size.
/// Also returns whether the object needs to go into the blob store.
pub const fn bytes_to_granules(len_in_bytes: usize) -> (usize, bool) {
if len_in_bytes > VarLenGranule::OBJECT_SIZE_BLOB_THRESHOLD {
// If `obj` is large enough to go in the blob store,
// you require space for a blob-hash,
// rather than the whole object.
// A blob hash fits in a single granule as BLAKE3 needs 32 bytes < 62 bytes.
(1, true)
} else {
// Using `div_ceil` here to ensure over- rather than under-allocation.
(len_in_bytes.div_ceil(Self::DATA_SIZE), false)
}
}
/// Chunks `bytes` into an iterator where each element fits into a granule.
pub fn chunks(bytes: &[u8]) -> impl DoubleEndedIterator<Item = &[u8]> {
bytes.chunks(Self::DATA_SIZE)
}
/// Returns the data from the var-len object in this granule.
pub fn data(&self) -> &[u8] {
let len = self.header.len() as usize;
let slice = &self.data[0..len];
// SAFETY: Because we never store `uninit` padding bytes in a var-len object,
// the paths that construct a `VarLenGranule` always initialize the bytes up to the length.
unsafe { slice_assume_init_ref(slice) }
}
/// Assumes that the granule stores a [`BlobHash`] and returns it.
///
/// Panics if the assumption is wrong.
pub fn blob_hash(&self) -> BlobHash {
self.data().try_into().unwrap()
}
}
/// A single [`VarLenGranule`] is needed to store a [`BlobHash`].
#[allow(clippy::assertions_on_constants)]
const _VLG_CAN_STORE_BLOB_HASH: () = assert!(VarLenGranule::DATA_SIZE >= BlobHash::SIZE);
/// A visitor object which can iterate over the var-len slots in a row.
///
/// Each var-len visitor is specialized to a particular row type,
/// though implementors of `VarLenMembers` decide whether this specialization
/// is per instance or per type.
///
/// The trivial implementor of `VarLenMembers` is [`AlignedVarLenOffsets`],
/// which stores the offsets of var-len members in a particular row type in a slice,
/// and uses pointer arithmetic to return references to them.
///
/// # Safety
///
/// - `Self::visit_var_len` and `Self::visit_var_len_mut`
/// must visit the same set of `VarLenRef`s in the same order.
/// Various consumers in `Page` and friends depend on this and the previous requirement.
pub unsafe trait VarLenMembers {
/// The iterator type returned by [`VarLenMembers::visit_var_len`].
type Iter<'this, 'row>: Iterator<Item = &'row MaybeUninit<VarLenRef>>
where
Self: 'this;
/// The iterator type returned by [`VarLenMembers::visit_var_len_mut`].
type IterMut<'this, 'row>: Iterator<Item = &'row mut MaybeUninit<VarLenRef>>
where
Self: 'this;
/// Treats `row` as storage for a row of the particular type handled by `self`,
/// and iterates over the (possibly uninitialized) `VarLenRef`s within it.
///
/// Callers are responsible for maintaining whether var-len members have been initialized.
///
/// # Safety
///
/// - `row` must be properly aligned for the row type.
/// This alignment constraint should be defined (and documented!)
/// by the implementor of `VarLenMembers`.
///
/// - `row` must further be a slice of exactly the number of bytes of the row type.
/// Implementors may or may not check this property via `debug_assert!`,
/// but callers *must always* ensure it for safety.
/// These invariants allow us to construct references to [`VarLenRef`]s inside the slice.
///
/// Note that `Iterator::next` is a safe function,
/// so it must always be valid to advance an iterator to its end.
///
/// - All callers of `visit_var_len` on a particular `row`
/// must visit the same set of `VarLenRef`s in the same order,
/// though they may do so through different implementors of `VarLenMembers`.
/// E.g. it would be valid to use an `AlignedVarLenOffsets` to initialize a row,
/// then later read from it using a hypothetical optimized JITted visitor,
/// provided the JITted visitor visited the same set of offsets.
unsafe fn visit_var_len_mut<'this, 'row>(&'this self, row: &'row mut Bytes) -> Self::IterMut<'this, 'row>;
/// Treats `row` as storage for a row of the particular type handled by `self`,
/// and iterates over the (possibly uninitialized) `VarLenRef`s within it.
///
/// Callers are responsible for maintaining whether var-len members have been initialized.
///
/// # Safety
///
/// - `row` must be properly aligned for the row type.
/// This alignment constraint should be defined (and documented!)
/// by the implementor of `VarLenMembers`.
///
/// - `row` must further be a slice of exactly the number of bytes of the row type.
/// Implementors may or may not check this property via `debug_assert!`,
/// but callers *must always* ensure it for safety.
/// These invariants allow us to construct references to [`VarLenRef`]s inside the slice.
///
/// Note that `Iterator::next` is a safe function,
/// so it must always be valid to advance an iterator to it end.
///
/// - All callers of `visit_var_len` on a particular `row`
/// must visit the same set of `VarLenRef`s in the same order,
/// though they may do so through different implementors of `VarLenMembers`.
/// E.g. it would be valid to use an `AlignedVarLenOffsets` to initialize a row,
/// then later read from it using a hypothetical optimized JITted visitor,
/// provided the JITted visitor visited the same set of offsets.
unsafe fn visit_var_len<'this, 'row>(&'this self, row: &'row Bytes) -> Self::Iter<'this, 'row>;
}
/// Treat `init_row` as storage for a row of the particular type handled by `visitor`,
/// and iterate over the assumed-to-be initialized `VarLenRef`s within it.
///
/// # Safety
///
/// - Callers must satisfy the contract of [`VarLenMembers::visit_var_len`]
/// with respect to `visitor` and `init_row`.
///
/// - `init_row` must be initialized and each `VarLenRef`
/// in `visitor.visit_var_len(init_row)` must also be initialized.
pub unsafe fn visit_var_len_assume_init<'row>(
visitor: &'row impl VarLenMembers,
init_row: &'row Bytes,
) -> impl 'row + Iterator<Item = VarLenRef> {
// SAFETY: `init_row` is valid per safety requirements.
// SAFETY: `vlr` is initialized in `init_row` per safety requirements.
unsafe { visitor.visit_var_len(init_row) }.map(move |vlr| unsafe { vlr.assume_init_read() })
}
/// Slice of offsets to var-len members, in units of 2-byte words.
///
/// This type is intended as a demonstration of the `VarLenMembers` interface,
/// and is used in testing and benchmarking.
///
/// Note that this visitor is not suitable for sum types, or for types which contain sums.
///
/// Units of 2-byte words because `VarLenRef` is 2-byte aligned.
/// Note that `VarLenRef` is 4 bytes wide, but only 2-byte aligned.
///
/// The listed offsets must not overlap, i.e. there must be a gap of at least 2 between each offset.
///
/// For `AlignedVarLenOffsets([n])`, a 4-byte `VarLenRef` exists in each row at +2n bytes.
///
/// e.g.:
/// `AlignedVarLenOffsets([0, 4])`
/// has:
/// row >= 12 bytes,
/// - var-len ref at +0..4 bytes (i.e. +0..2 `u16`s).
/// - fixed-len field(s) at +4..8 bytes (i.e. +2..4 `u16`s).
/// - var-len ref at +8..12 bytes (i.e. +4..6 `u16`s).
/// - fixed-len field(s) at +12.. (i.e. +6.. `u16`s), if row_size > 12.
#[derive(Copy, Clone)]
pub struct AlignedVarLenOffsets<'a>(&'a [u16]);
impl<'a> AlignedVarLenOffsets<'a> {
/// Returns an [`AlignedVarLenOffsets`] using `offsets`.
pub const fn from_offsets(offsets: &'a [u16]) -> Self {
Self(offsets)
}
}
// SAFETY: `visit_var_len` and `visit_var_len_mut` are only different
// in that they yield `&` vs. `&mut` and are otherwise identical.
unsafe impl<'a> VarLenMembers for AlignedVarLenOffsets<'a> {
type Iter<'this, 'row> = AlignedVarLenOffsetsIter<'this, 'row>
where Self: 'this;
type IterMut<'this, 'row> = AlignedVarLenOffsetsIterMut<'this, 'row>
where Self: 'this;
/// # Safety
///
/// `row` must be 2-byte aligned.
///
/// `row` must be an allocation of at least `2n + 2` bytes,
/// where `n` is the largest offset in `self`.
///
/// All callers of `visit_var_len` on a particular `row`
/// must visit the same set of `VarLenRef`s,
/// though they may do so through different implementors of `VarLenMembers`.
/// E.g. it would be valid to use an `AlignedVarLenOffsets` to initialize a row,
/// then later read from it using a hypothetical optimized JITted visitor,
/// provided the JITted visitor visited the same set of offsets.
unsafe fn visit_var_len<'this, 'row>(&'this self, row: &'row Bytes) -> Self::Iter<'this, 'row> {
AlignedVarLenOffsetsIter {
offsets: self,
_row_lifetime: PhantomData,
row: row.as_ptr(),
next_offset_idx: 0,
}
}
/// # Safety
///
/// `row` must be 2-byte aligned.
///
/// `row` must be an allocation of at least `2n + 2` bytes,
/// where `n` is the largest offset in `self`.
///
/// All callers of `visit_var_len` on a particular `row`
/// must visit the same set of `VarLenRef`s,
/// though they may do so through different implementors of `VarLenMembers`.
/// E.g. it would be valid to use an `AlignedVarLenOffsets` to initialize a row,
/// then later read from it using a hypothetical optimized JITted visitor,
/// provided the JITted visitor visited the same set of offsets.
unsafe fn visit_var_len_mut<'this, 'row>(&'this self, row: &'row mut Bytes) -> Self::IterMut<'this, 'row> {
AlignedVarLenOffsetsIterMut {
offsets: self,
_row_lifetime: PhantomData,
row: row.as_mut_ptr(),
next_offset_idx: 0,
}
}
}
pub struct AlignedVarLenOffsetsIter<'offsets, 'row> {
offsets: &'offsets AlignedVarLenOffsets<'offsets>,
_row_lifetime: PhantomData<&'row Bytes>,
row: *const Byte,
next_offset_idx: usize,
}
impl<'offsets, 'row> Iterator for AlignedVarLenOffsetsIter<'offsets, 'row> {
type Item = &'row MaybeUninit<VarLenRef>;
fn next(&mut self) -> Option<Self::Item> {
if self.next_offset_idx >= self.offsets.0.len() {
None
} else {
// I sure would like to be able to write `self.next_offset_idx.post_increment(1)`...
// - pgoldman(2023-11-16).
let curr_offset_idx = self.next_offset_idx;
self.next_offset_idx += 1;
// SAFETY: `AlignedVarLenOffsets::visit_var_len`'s safety requirements
// mean that `row` is always 2-byte aligned, so this will be too,
// and that `row` is large enough for all the `offsets`,
// so this `add` is always in-bounds.
let elt_ptr: *const MaybeUninit<VarLenRef> =
unsafe { self.row.add(curr_offset_idx * mem::align_of::<VarLenRef>()).cast() };
// SAFETY: `elt_ptr` is aligned and inbounds.
// `MaybeUninit<VarLenRef>` has no value restrictions,
// so it's safe to create an `&mut` to `uninit` or garbage.
Some(unsafe { &*elt_ptr })
}
}
}
pub struct AlignedVarLenOffsetsIterMut<'offsets, 'row> {
offsets: &'offsets AlignedVarLenOffsets<'offsets>,
_row_lifetime: PhantomData<&'row mut Bytes>,
row: *mut Byte,
next_offset_idx: usize,
}
impl<'offsets, 'row> Iterator for AlignedVarLenOffsetsIterMut<'offsets, 'row> {
type Item = &'row mut MaybeUninit<VarLenRef>;
fn next(&mut self) -> Option<Self::Item> {
if self.next_offset_idx >= self.offsets.0.len() {
None
} else {
// I sure would like to be able to write `self.next_offset_idx.post_increment(1)`...
// - pgoldman(2023-11-16).
let curr_offset_idx = self.next_offset_idx;
self.next_offset_idx += 1;
// SAFETY: `AlignedVarLenOffsets::visit_var_len`'s safety requirements
// mean that `row` is always 2-byte aligned, so this will be too,
// and that `row` is large enough for all the `offsets`,
// so this `add` is always in-bounds.
let elt_ptr: *mut MaybeUninit<VarLenRef> =
unsafe { self.row.add(curr_offset_idx * mem::align_of::<VarLenRef>()).cast() };
// SAFETY: `elt_ptr` is aligned and inbounds.
// `MaybeUninit<VarLenRef>` has no value restrictions,
// so it's safe to create an `&mut` to `uninit` or garbage.
Some(unsafe { &mut *elt_ptr })
}
}
}
/// A `VarLenMembers` visitor for row types with no var-len components,
/// which never visits anything.
#[derive(Copy, Clone)]
pub struct NullVarLenVisitor;
// SAFETY: Both `visit_var_len` and `visit_var_len_mut` visit the empty set.
unsafe impl VarLenMembers for NullVarLenVisitor {
type Iter<'this, 'row> = iter::Empty<&'row MaybeUninit<VarLenRef>>;
type IterMut<'this, 'row> = iter::Empty<&'row mut MaybeUninit<VarLenRef>>;
unsafe fn visit_var_len<'this, 'row>(&'this self, _row: &'row Bytes) -> Self::Iter<'this, 'row> {
iter::empty()
}
unsafe fn visit_var_len_mut<'this, 'row>(&'this self, _row: &'row mut Bytes) -> Self::IterMut<'this, 'row> {
iter::empty()
}
}
#[cfg(test)]
mod test {
use super::*;
use proptest::prelude::*;
fn generate_var_len_offset() -> impl Strategy<Value = PageOffset> {
(0u16..(1 << 10)).prop_map(|unaligned| PageOffset(unaligned * VarLenGranule::SIZE.0))
}
fn generate_len() -> impl Strategy<Value = u8> {
0..(VarLenGranule::DATA_SIZE as u8)
}
proptest! {
#[test]
fn granule_header_bitbashing(len in generate_len(), next in generate_var_len_offset(), len2 in generate_len(), next2 in generate_var_len_offset()) {
let header = VarLenGranuleHeader::new(len, next);
prop_assert_eq!(len, header.len());
prop_assert_eq!(next, header.next());
let header_new_len = header.with_len(len2);
prop_assert_eq!(len2, header_new_len.len());
prop_assert_eq!(next, header_new_len.next());
let header_new_next = header.with_next(next2);
prop_assert_eq!(len, header_new_next.len());
prop_assert_eq!(next2, header_new_next.next());
prop_assert_eq!(header_new_len.with_next(next2).0, header_new_next.with_len(len2).0);
}
}
}