spacetimedb_sats/
typespace.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
use std::any::TypeId;
use std::ops::{Index, IndexMut};
use std::rc::Rc;
use std::sync::Arc;

use crate::algebraic_type::AlgebraicType;
use crate::algebraic_type_ref::AlgebraicTypeRef;
use crate::WithTypespace;

/// An error that occurs when attempting to resolve a type.
#[derive(thiserror::Error, Debug, PartialOrd, Ord, PartialEq, Eq)]
pub enum TypeRefError {
    // TODO: ideally this should give some useful type name or path.
    // Figure out if we can provide that even though it's not encoded in SATS.
    #[error("Found recursive type reference {0}")]
    RecursiveTypeRef(AlgebraicTypeRef),

    #[error("Type reference {0} out of bounds")]
    InvalidTypeRef(AlgebraicTypeRef),
}

/// A `Typespace` represents the typing context in SATS.
///
/// That is, this is the `Δ` or `Γ` you'll see in type theory litterature.
///
/// We use (sort of) [deBrujin indices](https://en.wikipedia.org/wiki/De_Bruijn_index)
/// to represent our type variables.
/// Notably however, these are given for the entire module
/// and there are no universal quantifiers (i.e., `Δ, α ⊢ τ | Δ ⊢ ∀ α. τ`)
/// nor are there type lambdas (i.e., `Λτ. v`).
/// See [System F], the second-order lambda calculus, for more on `∀` and `Λ`.
///
/// There are however recursive types in SATs,
/// e.g., `&0 = { Cons({ v: U8, t: &0 }), Nil }` represents a basic cons list
/// where `&0` is the type reference at index `0`.
///
/// [System F]: https://en.wikipedia.org/wiki/System_F
#[derive(Debug, Clone, SpacetimeType)]
#[cfg_attr(feature = "test", derive(PartialEq, Eq, PartialOrd, Ord))]
#[sats(crate = crate)]
pub struct Typespace {
    /// The types in our typing context that can be referred to with [`AlgebraicTypeRef`]s.
    pub types: Vec<AlgebraicType>,
}

impl Default for Typespace {
    fn default() -> Self {
        Self::new(Vec::new())
    }
}

impl Index<AlgebraicTypeRef> for Typespace {
    type Output = AlgebraicType;

    fn index(&self, index: AlgebraicTypeRef) -> &Self::Output {
        &self.types[index.idx()]
    }
}
impl IndexMut<AlgebraicTypeRef> for Typespace {
    fn index_mut(&mut self, index: AlgebraicTypeRef) -> &mut Self::Output {
        &mut self.types[index.idx()]
    }
}

impl Typespace {
    pub const EMPTY: &'static Typespace = &Self::new(Vec::new());

    /// Returns a context ([`Typespace`]) with the given `types`.
    pub const fn new(types: Vec<AlgebraicType>) -> Self {
        Self { types }
    }

    /// Returns the [`AlgebraicType`] referred to by `r` within this context.
    pub fn get(&self, r: AlgebraicTypeRef) -> Option<&AlgebraicType> {
        self.types.get(r.idx())
    }

    /// Returns a mutable reference to the [`AlgebraicType`] referred to by `r` within this context.
    pub fn get_mut(&mut self, r: AlgebraicTypeRef) -> Option<&mut AlgebraicType> {
        self.types.get_mut(r.idx())
    }

    /// Inserts an `AlgebraicType` into the typespace
    /// and returns an `AlgebraicTypeRef` that refers to the inserted `AlgebraicType`.
    ///
    /// This allows for self referential,
    /// recursive or other complex types to be declared in the typespace.
    ///
    /// You can also use this to later change the meaning of the returned `AlgebraicTypeRef`
    /// when you cannot provide the full definition of the type yet.
    ///
    /// Panics if the number of type references exceeds an `u32`.
    pub fn add(&mut self, ty: AlgebraicType) -> AlgebraicTypeRef {
        let index = self
            .types
            .len()
            .try_into()
            .expect("ran out of space for `AlgebraicTypeRef`s");

        self.types.push(ty);
        AlgebraicTypeRef(index)
    }

    /// Returns `ty` combined with the context `self`.
    pub const fn with_type<'a, T: ?Sized>(&'a self, ty: &'a T) -> WithTypespace<'a, T> {
        WithTypespace::new(self, ty)
    }

    /// Returns the `AlgebraicType` that `r` resolves to in the context of the `Typespace`.
    ///
    /// Panics if `r` is not known by the `Typespace`.
    pub fn resolve(&self, r: AlgebraicTypeRef) -> WithTypespace<'_, AlgebraicType> {
        self.with_type(&self[r])
    }

    /// Inlines all type references in `ty` recursively using the current typeset.
    pub fn inline_typerefs_in_type(&mut self, ty: &mut AlgebraicType) -> Result<(), TypeRefError> {
        match ty {
            AlgebraicType::Sum(sum_ty) => {
                for variant in &mut *sum_ty.variants {
                    self.inline_typerefs_in_type(&mut variant.algebraic_type)?;
                }
            }
            AlgebraicType::Product(product_ty) => {
                for element in &mut *product_ty.elements {
                    self.inline_typerefs_in_type(&mut element.algebraic_type)?;
                }
            }
            AlgebraicType::Array(array_ty) => {
                self.inline_typerefs_in_type(&mut array_ty.elem_ty)?;
            }
            AlgebraicType::Map(map_type) => {
                self.inline_typerefs_in_type(&mut map_type.key_ty)?;
                self.inline_typerefs_in_type(&mut map_type.ty)?;
            }
            AlgebraicType::Ref(r) => {
                // Lazily resolve any nested references first.
                let resolved_ty = self.inline_typerefs_in_ref(*r)?;
                // Now we can clone the fully-resolved type.
                *ty = resolved_ty.clone();
            }
            _ => {}
        }
        Ok(())
    }

    /// Inlines all nested references behind the current [`AlgebraicTypeRef`] recursively using the current typeset.
    ///
    /// Returns the fully-resolved type or an error if the type reference is invalid or self-referential.
    fn inline_typerefs_in_ref(&mut self, r: AlgebraicTypeRef) -> Result<&AlgebraicType, TypeRefError> {
        let resolved_ty = match self.get_mut(r) {
            None => return Err(TypeRefError::InvalidTypeRef(r)),
            // If we encountered a type reference, that means one of the parent calls
            // to `inline_typerefs_in_ref(r)` swapped its definition out,
            // i.e. the type referred to by `r` is recursive.
            // Note that it doesn't necessarily need to be the current call,
            // e.g. A -> B -> A dependency also forms a recursive cycle.
            // Our database can't handle recursive types, so return an error.
            // TODO: support recursive types in the future.
            Some(AlgebraicType::Ref(_)) => return Err(TypeRefError::RecursiveTypeRef(r)),
            Some(resolved_ty) => resolved_ty,
        };
        // First, swap the type with a reference.
        // This allows us to:
        // 1. Recurse into each type mutably while holding a mutable
        //    reference to the typespace as well, without cloning.
        // 2. Easily detect self-references at arbitrary depth without
        //    having to keep a separate `seen: HashSet<_>` or something.
        let mut resolved_ty = std::mem::replace(resolved_ty, AlgebraicType::Ref(r));
        // Next, recurse into the type and inline any nested type references.
        self.inline_typerefs_in_type(&mut resolved_ty)?;
        // Resolve the place again, since we couldn't hold the mutable reference across the call above.
        let place = &mut self[r];
        // Now we can put the fully-resolved type back and return that place.
        *place = resolved_ty;
        Ok(place)
    }

    /// Inlines all type references in the typespace recursively.
    ///
    /// Errors out if any type reference is invalid or self-referential.
    pub fn inline_all_typerefs(&mut self) -> Result<(), TypeRefError> {
        // We need to use indices here to allow mutable reference on each iteration.
        for r in 0..self.types.len() as u32 {
            self.inline_typerefs_in_ref(AlgebraicTypeRef(r))?;
        }
        Ok(())
    }

    /// Iterate over types in the typespace with their references.
    pub fn refs_with_types(&self) -> impl Iterator<Item = (AlgebraicTypeRef, &AlgebraicType)> {
        self.types
            .iter()
            .enumerate()
            .map(|(idx, ty)| (AlgebraicTypeRef(idx as _), ty))
    }

    /// Check that the entire typespace is valid for generating a `SpacetimeDB` client module.
    /// See also the `spacetimedb_schema` crate, which layers additional validation on top
    /// of these checks.
    ///
    /// All types in the typespace must either be
    /// [`valid_for_client_type_definition`](AlgebraicType::valid_for_client_type_definition) or
    /// [`valid_for_client_type_use`](AlgebraicType::valid_for_client_type_definition).
    /// (Only the types that are `valid_for_client_type_definition` will have types generated in
    /// the client, but the other types are allowed for the convenience of module binding codegen.)
    pub fn is_valid_for_client_code_generation(&self) -> bool {
        self.types
            .iter()
            .all(|ty| ty.is_valid_for_client_type_definition() || ty.is_valid_for_client_type_use())
    }
}

impl FromIterator<AlgebraicType> for Typespace {
    fn from_iter<T: IntoIterator<Item = AlgebraicType>>(iter: T) -> Self {
        Self {
            types: iter.into_iter().collect(),
        }
    }
}

/// A trait for Rust types that can be represented as an [`AlgebraicType`]
/// with an empty typing context.
///
/// The returned `AlgebraicType` must have no free variables,
/// that is, no `AlgebraicTypeRef`s in its tree at all.
pub trait GroundSpacetimeType {
    /// Returns the `AlgebraicType` representation of `Self`.
    fn get_type() -> AlgebraicType;
}

/// A trait for Rust types that can be represented as an [`AlgebraicType`]
/// provided a typing context `typespace`.
pub trait SpacetimeType {
    /// Returns an `AlgebraicType` representing the type for `Self` in SATS
    /// and in the typing context in `typespace`.
    fn make_type<S: TypespaceBuilder>(typespace: &mut S) -> AlgebraicType;
}

use ethnum::{i256, u256};
use smallvec::SmallVec;
pub use spacetimedb_bindings_macro::SpacetimeType;

/// A trait for types that can build a [`Typespace`].
pub trait TypespaceBuilder {
    /// Returns and adds a representation of type `T: 'static` as an [`AlgebraicType`]
    /// with an optional `name` to the typing context in `self`.
    fn add(
        &mut self,
        typeid: TypeId,
        name: Option<&'static str>,
        make_ty: impl FnOnce(&mut Self) -> AlgebraicType,
    ) -> AlgebraicType;

    fn add_type<T: SpacetimeType>(&mut self) -> AlgebraicType
    where
        Self: Sized,
    {
        T::make_type(self)
    }
}

/// Implements [`SpacetimeType`] for a type in a simplified manner.
///
/// An example:
/// ```ignore
/// struct Foo<'a, T>(&'a T, u8);
/// impl_st!(
/// //     Type parameters      Impl type
/// //            v                 v
/// //   --------------------  ----------
///     ['a, T: SpacetimeType] Foo<'a, T>,
/// //  The `make_type` implementation where `ts: impl TypespaceBuilder`
/// //  and the expression right of `=>` is an `AlgebraicType`.
///     ts => AlgebraicType::product([T::make_type(ts), AlgebraicType::U8])
/// );
/// ```
#[macro_export]
macro_rules! impl_st {
    ([ $($generic_wrapped:ident $($other_generics:tt)*)? ] $rty:ty, $stty:expr) => {
        impl<$($generic_wrapped $($other_generics)*)?> $crate::GroundSpacetimeType for $rty
            $(where $generic_wrapped: $crate::GroundSpacetimeType)?
        {
            fn get_type() -> $crate::AlgebraicType {
                $stty
            }
        }

        impl_st!([ $($generic $($other_generics)*)? ] $rty, _ts => $stty);
    };
    ([ $($generic_wrapped:ident $($other_generics:tt)*)? ] $rty:ty, $ts:ident => $stty:expr) => {
        impl<$($generic_wrapped $($other_generics)*)?> $crate::SpacetimeType for $rty
            $(where $generic_wrapped: $crate::SpacetimeType)?
        {
            fn make_type<S: $crate::typespace::TypespaceBuilder>($ts: &mut S) -> $crate::AlgebraicType {
                $stty
            }
        }
    };
}

macro_rules! impl_primitives {
    ($($t:ty => $x:ident,)*) => {
        $(impl_st!([] $t, AlgebraicType::$x);)*
    };
}

impl_primitives! {
    bool => Bool,
    u8 => U8,
    i8 => I8,
    u16 => U16,
    i16 => I16,
    u32 => U32,
    i32 => I32,
    u64 => U64,
    i64 => I64,
    u128 => U128,
    i128 => I128,
    u256 => U256,
    i256 => I256,
    f32 => F32,
    f64 => F64,
    String => String,
}

impl_st!([](), AlgebraicType::unit());
impl_st!([] str, AlgebraicType::String);
impl_st!([T] [T], ts => AlgebraicType::array(T::make_type(ts)));
impl_st!([T: ?Sized] Box<T>, ts => T::make_type(ts));
impl_st!([T: ?Sized] Rc<T>, ts => T::make_type(ts));
impl_st!([T: ?Sized] Arc<T>, ts => T::make_type(ts));
impl_st!([T] Vec<T>, ts => <[T]>::make_type(ts));
impl_st!([T, const N: usize] SmallVec<[T; N]>, ts => <[T]>::make_type(ts));
impl_st!([T] Option<T>, ts => AlgebraicType::option(T::make_type(ts)));

impl_st!([] spacetimedb_primitives::ColId, AlgebraicType::U16);
impl_st!([] spacetimedb_primitives::TableId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::IndexId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::SequenceId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::ConstraintId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::ScheduleId, AlgebraicType::U32);

impl_st!([] spacetimedb_primitives::ColList, ts => AlgebraicType::array(spacetimedb_primitives::ColId::make_type(ts)));
impl_st!([] spacetimedb_primitives::ColSet, ts => AlgebraicType::array(spacetimedb_primitives::ColId::make_type(ts)));

impl_st!([] bytes::Bytes, AlgebraicType::bytes());

#[cfg(feature = "bytestring")]
impl_st!([] bytestring::ByteString, AlgebraicType::String);

#[cfg(test)]
mod tests {
    use crate::proptest::generate_typespace_valid_for_codegen;
    use proptest::prelude::*;

    use super::*;

    proptest! {
        #![proptest_config(ProptestConfig::with_cases(512))]
        #[test]
        fn is_valid_for_client_code_generation(typespace in generate_typespace_valid_for_codegen(5)) {
            prop_assert!(typespace.is_valid_for_client_code_generation());
        }
    }

    #[test]
    fn is_not_valid_for_client_code_generation() {
        let bad_inner_1 = AlgebraicType::sum([("red", AlgebraicType::U8), ("green", AlgebraicType::U8)]);
        let bad_inner_2 = AlgebraicType::product([("red", AlgebraicType::U8), ("green", AlgebraicType::U8)]);

        fn assert_not_valid(ty: AlgebraicType) {
            let typespace = Typespace::new(vec![ty.clone()]);
            assert!(!typespace.is_valid_for_client_code_generation(), "{:?}", ty);
        }
        assert_not_valid(AlgebraicType::product([AlgebraicType::U8, bad_inner_1.clone()]));
        assert_not_valid(AlgebraicType::product([AlgebraicType::U8, bad_inner_2.clone()]));

        assert_not_valid(AlgebraicType::sum([AlgebraicType::U8, bad_inner_1.clone()]));
        assert_not_valid(AlgebraicType::sum([AlgebraicType::U8, bad_inner_2.clone()]));

        assert_not_valid(AlgebraicType::array(bad_inner_1.clone()));
        assert_not_valid(AlgebraicType::array(bad_inner_2.clone()));

        assert_not_valid(AlgebraicType::option(bad_inner_1.clone()));
        assert_not_valid(AlgebraicType::option(bad_inner_2.clone()));

        assert_not_valid(AlgebraicType::map(AlgebraicType::U8, bad_inner_1.clone()));
        assert_not_valid(AlgebraicType::map(AlgebraicType::U8, bad_inner_2.clone()));

        assert_not_valid(AlgebraicType::map(bad_inner_1.clone(), AlgebraicType::U8));
        assert_not_valid(AlgebraicType::map(bad_inner_2.clone(), AlgebraicType::U8));

        assert_not_valid(AlgebraicType::option(AlgebraicType::array(AlgebraicType::option(
            bad_inner_1.clone(),
        ))));
    }
}