spacetimedb_sats/typespace.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
use std::any::TypeId;
use std::ops::{Index, IndexMut};
use std::rc::Rc;
use std::sync::Arc;
use crate::algebraic_type::AlgebraicType;
use crate::algebraic_type_ref::AlgebraicTypeRef;
use crate::WithTypespace;
/// An error that occurs when attempting to resolve a type.
#[derive(thiserror::Error, Debug, PartialOrd, Ord, PartialEq, Eq)]
pub enum TypeRefError {
// TODO: ideally this should give some useful type name or path.
// Figure out if we can provide that even though it's not encoded in SATS.
#[error("Found recursive type reference {0}")]
RecursiveTypeRef(AlgebraicTypeRef),
#[error("Type reference {0} out of bounds")]
InvalidTypeRef(AlgebraicTypeRef),
}
/// A `Typespace` represents the typing context in SATS.
///
/// That is, this is the `Δ` or `Γ` you'll see in type theory litterature.
///
/// We use (sort of) [deBrujin indices](https://en.wikipedia.org/wiki/De_Bruijn_index)
/// to represent our type variables.
/// Notably however, these are given for the entire module
/// and there are no universal quantifiers (i.e., `Δ, α ⊢ τ | Δ ⊢ ∀ α. τ`)
/// nor are there type lambdas (i.e., `Λτ. v`).
/// See [System F], the second-order lambda calculus, for more on `∀` and `Λ`.
///
/// There are however recursive types in SATs,
/// e.g., `&0 = { Cons({ v: U8, t: &0 }), Nil }` represents a basic cons list
/// where `&0` is the type reference at index `0`.
///
/// [System F]: https://en.wikipedia.org/wiki/System_F
#[derive(Debug, Clone, SpacetimeType)]
#[cfg_attr(feature = "test", derive(PartialEq, Eq, PartialOrd, Ord))]
#[sats(crate = crate)]
pub struct Typespace {
/// The types in our typing context that can be referred to with [`AlgebraicTypeRef`]s.
pub types: Vec<AlgebraicType>,
}
impl Default for Typespace {
fn default() -> Self {
Self::new(Vec::new())
}
}
impl Index<AlgebraicTypeRef> for Typespace {
type Output = AlgebraicType;
fn index(&self, index: AlgebraicTypeRef) -> &Self::Output {
&self.types[index.idx()]
}
}
impl IndexMut<AlgebraicTypeRef> for Typespace {
fn index_mut(&mut self, index: AlgebraicTypeRef) -> &mut Self::Output {
&mut self.types[index.idx()]
}
}
impl Typespace {
pub const EMPTY: &'static Typespace = &Self::new(Vec::new());
/// Returns a context ([`Typespace`]) with the given `types`.
pub const fn new(types: Vec<AlgebraicType>) -> Self {
Self { types }
}
/// Returns the [`AlgebraicType`] referred to by `r` within this context.
pub fn get(&self, r: AlgebraicTypeRef) -> Option<&AlgebraicType> {
self.types.get(r.idx())
}
/// Returns a mutable reference to the [`AlgebraicType`] referred to by `r` within this context.
pub fn get_mut(&mut self, r: AlgebraicTypeRef) -> Option<&mut AlgebraicType> {
self.types.get_mut(r.idx())
}
/// Inserts an `AlgebraicType` into the typespace
/// and returns an `AlgebraicTypeRef` that refers to the inserted `AlgebraicType`.
///
/// This allows for self referential,
/// recursive or other complex types to be declared in the typespace.
///
/// You can also use this to later change the meaning of the returned `AlgebraicTypeRef`
/// when you cannot provide the full definition of the type yet.
///
/// Panics if the number of type references exceeds an `u32`.
pub fn add(&mut self, ty: AlgebraicType) -> AlgebraicTypeRef {
let index = self
.types
.len()
.try_into()
.expect("ran out of space for `AlgebraicTypeRef`s");
self.types.push(ty);
AlgebraicTypeRef(index)
}
/// Returns `ty` combined with the context `self`.
pub const fn with_type<'a, T: ?Sized>(&'a self, ty: &'a T) -> WithTypespace<'a, T> {
WithTypespace::new(self, ty)
}
/// Returns the `AlgebraicType` that `r` resolves to in the context of the `Typespace`.
///
/// Panics if `r` is not known by the `Typespace`.
pub fn resolve(&self, r: AlgebraicTypeRef) -> WithTypespace<'_, AlgebraicType> {
self.with_type(&self[r])
}
/// Inlines all type references in `ty` recursively using the current typeset.
pub fn inline_typerefs_in_type(&mut self, ty: &mut AlgebraicType) -> Result<(), TypeRefError> {
match ty {
AlgebraicType::Sum(sum_ty) => {
for variant in &mut *sum_ty.variants {
self.inline_typerefs_in_type(&mut variant.algebraic_type)?;
}
}
AlgebraicType::Product(product_ty) => {
for element in &mut *product_ty.elements {
self.inline_typerefs_in_type(&mut element.algebraic_type)?;
}
}
AlgebraicType::Array(array_ty) => {
self.inline_typerefs_in_type(&mut array_ty.elem_ty)?;
}
AlgebraicType::Map(map_type) => {
self.inline_typerefs_in_type(&mut map_type.key_ty)?;
self.inline_typerefs_in_type(&mut map_type.ty)?;
}
AlgebraicType::Ref(r) => {
// Lazily resolve any nested references first.
let resolved_ty = self.inline_typerefs_in_ref(*r)?;
// Now we can clone the fully-resolved type.
*ty = resolved_ty.clone();
}
_ => {}
}
Ok(())
}
/// Inlines all nested references behind the current [`AlgebraicTypeRef`] recursively using the current typeset.
///
/// Returns the fully-resolved type or an error if the type reference is invalid or self-referential.
fn inline_typerefs_in_ref(&mut self, r: AlgebraicTypeRef) -> Result<&AlgebraicType, TypeRefError> {
let resolved_ty = match self.get_mut(r) {
None => return Err(TypeRefError::InvalidTypeRef(r)),
// If we encountered a type reference, that means one of the parent calls
// to `inline_typerefs_in_ref(r)` swapped its definition out,
// i.e. the type referred to by `r` is recursive.
// Note that it doesn't necessarily need to be the current call,
// e.g. A -> B -> A dependency also forms a recursive cycle.
// Our database can't handle recursive types, so return an error.
// TODO: support recursive types in the future.
Some(AlgebraicType::Ref(_)) => return Err(TypeRefError::RecursiveTypeRef(r)),
Some(resolved_ty) => resolved_ty,
};
// First, swap the type with a reference.
// This allows us to:
// 1. Recurse into each type mutably while holding a mutable
// reference to the typespace as well, without cloning.
// 2. Easily detect self-references at arbitrary depth without
// having to keep a separate `seen: HashSet<_>` or something.
let mut resolved_ty = std::mem::replace(resolved_ty, AlgebraicType::Ref(r));
// Next, recurse into the type and inline any nested type references.
self.inline_typerefs_in_type(&mut resolved_ty)?;
// Resolve the place again, since we couldn't hold the mutable reference across the call above.
let place = &mut self[r];
// Now we can put the fully-resolved type back and return that place.
*place = resolved_ty;
Ok(place)
}
/// Inlines all type references in the typespace recursively.
///
/// Errors out if any type reference is invalid or self-referential.
pub fn inline_all_typerefs(&mut self) -> Result<(), TypeRefError> {
// We need to use indices here to allow mutable reference on each iteration.
for r in 0..self.types.len() as u32 {
self.inline_typerefs_in_ref(AlgebraicTypeRef(r))?;
}
Ok(())
}
/// Iterate over types in the typespace with their references.
pub fn refs_with_types(&self) -> impl Iterator<Item = (AlgebraicTypeRef, &AlgebraicType)> {
self.types
.iter()
.enumerate()
.map(|(idx, ty)| (AlgebraicTypeRef(idx as _), ty))
}
/// Check that the entire typespace is valid for generating a `SpacetimeDB` client module.
/// See also the `spacetimedb_schema` crate, which layers additional validation on top
/// of these checks.
///
/// All types in the typespace must either be
/// [`valid_for_client_type_definition`](AlgebraicType::valid_for_client_type_definition) or
/// [`valid_for_client_type_use`](AlgebraicType::valid_for_client_type_definition).
/// (Only the types that are `valid_for_client_type_definition` will have types generated in
/// the client, but the other types are allowed for the convenience of module binding codegen.)
pub fn is_valid_for_client_code_generation(&self) -> bool {
self.types
.iter()
.all(|ty| ty.is_valid_for_client_type_definition() || ty.is_valid_for_client_type_use())
}
}
impl FromIterator<AlgebraicType> for Typespace {
fn from_iter<T: IntoIterator<Item = AlgebraicType>>(iter: T) -> Self {
Self {
types: iter.into_iter().collect(),
}
}
}
/// A trait for Rust types that can be represented as an [`AlgebraicType`]
/// with an empty typing context.
///
/// The returned `AlgebraicType` must have no free variables,
/// that is, no `AlgebraicTypeRef`s in its tree at all.
pub trait GroundSpacetimeType {
/// Returns the `AlgebraicType` representation of `Self`.
fn get_type() -> AlgebraicType;
}
/// A trait for Rust types that can be represented as an [`AlgebraicType`]
/// provided a typing context `typespace`.
pub trait SpacetimeType {
/// Returns an `AlgebraicType` representing the type for `Self` in SATS
/// and in the typing context in `typespace`.
fn make_type<S: TypespaceBuilder>(typespace: &mut S) -> AlgebraicType;
}
use ethnum::{i256, u256};
use smallvec::SmallVec;
pub use spacetimedb_bindings_macro::SpacetimeType;
/// A trait for types that can build a [`Typespace`].
pub trait TypespaceBuilder {
/// Returns and adds a representation of type `T: 'static` as an [`AlgebraicType`]
/// with an optional `name` to the typing context in `self`.
fn add(
&mut self,
typeid: TypeId,
name: Option<&'static str>,
make_ty: impl FnOnce(&mut Self) -> AlgebraicType,
) -> AlgebraicType;
fn add_type<T: SpacetimeType>(&mut self) -> AlgebraicType
where
Self: Sized,
{
T::make_type(self)
}
}
/// Implements [`SpacetimeType`] for a type in a simplified manner.
///
/// An example:
/// ```ignore
/// struct Foo<'a, T>(&'a T, u8);
/// impl_st!(
/// // Type parameters Impl type
/// // v v
/// // -------------------- ----------
/// ['a, T: SpacetimeType] Foo<'a, T>,
/// // The `make_type` implementation where `ts: impl TypespaceBuilder`
/// // and the expression right of `=>` is an `AlgebraicType`.
/// ts => AlgebraicType::product([T::make_type(ts), AlgebraicType::U8])
/// );
/// ```
#[macro_export]
macro_rules! impl_st {
([ $($generic_wrapped:ident $($other_generics:tt)*)? ] $rty:ty, $stty:expr) => {
impl<$($generic_wrapped $($other_generics)*)?> $crate::GroundSpacetimeType for $rty
$(where $generic_wrapped: $crate::GroundSpacetimeType)?
{
fn get_type() -> $crate::AlgebraicType {
$stty
}
}
impl_st!([ $($generic $($other_generics)*)? ] $rty, _ts => $stty);
};
([ $($generic_wrapped:ident $($other_generics:tt)*)? ] $rty:ty, $ts:ident => $stty:expr) => {
impl<$($generic_wrapped $($other_generics)*)?> $crate::SpacetimeType for $rty
$(where $generic_wrapped: $crate::SpacetimeType)?
{
fn make_type<S: $crate::typespace::TypespaceBuilder>($ts: &mut S) -> $crate::AlgebraicType {
$stty
}
}
};
}
macro_rules! impl_primitives {
($($t:ty => $x:ident,)*) => {
$(impl_st!([] $t, AlgebraicType::$x);)*
};
}
impl_primitives! {
bool => Bool,
u8 => U8,
i8 => I8,
u16 => U16,
i16 => I16,
u32 => U32,
i32 => I32,
u64 => U64,
i64 => I64,
u128 => U128,
i128 => I128,
u256 => U256,
i256 => I256,
f32 => F32,
f64 => F64,
String => String,
}
impl_st!([](), AlgebraicType::unit());
impl_st!([] str, AlgebraicType::String);
impl_st!([T] [T], ts => AlgebraicType::array(T::make_type(ts)));
impl_st!([T: ?Sized] Box<T>, ts => T::make_type(ts));
impl_st!([T: ?Sized] Rc<T>, ts => T::make_type(ts));
impl_st!([T: ?Sized] Arc<T>, ts => T::make_type(ts));
impl_st!([T] Vec<T>, ts => <[T]>::make_type(ts));
impl_st!([T, const N: usize] SmallVec<[T; N]>, ts => <[T]>::make_type(ts));
impl_st!([T] Option<T>, ts => AlgebraicType::option(T::make_type(ts)));
impl_st!([] spacetimedb_primitives::ColId, AlgebraicType::U16);
impl_st!([] spacetimedb_primitives::TableId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::IndexId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::SequenceId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::ConstraintId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::ScheduleId, AlgebraicType::U32);
impl_st!([] spacetimedb_primitives::ColList, ts => AlgebraicType::array(spacetimedb_primitives::ColId::make_type(ts)));
impl_st!([] spacetimedb_primitives::ColSet, ts => AlgebraicType::array(spacetimedb_primitives::ColId::make_type(ts)));
impl_st!([] bytes::Bytes, AlgebraicType::bytes());
#[cfg(feature = "bytestring")]
impl_st!([] bytestring::ByteString, AlgebraicType::String);
#[cfg(test)]
mod tests {
use crate::proptest::generate_typespace_valid_for_codegen;
use proptest::prelude::*;
use super::*;
proptest! {
#![proptest_config(ProptestConfig::with_cases(512))]
#[test]
fn is_valid_for_client_code_generation(typespace in generate_typespace_valid_for_codegen(5)) {
prop_assert!(typespace.is_valid_for_client_code_generation());
}
}
#[test]
fn is_not_valid_for_client_code_generation() {
let bad_inner_1 = AlgebraicType::sum([("red", AlgebraicType::U8), ("green", AlgebraicType::U8)]);
let bad_inner_2 = AlgebraicType::product([("red", AlgebraicType::U8), ("green", AlgebraicType::U8)]);
fn assert_not_valid(ty: AlgebraicType) {
let typespace = Typespace::new(vec![ty.clone()]);
assert!(!typespace.is_valid_for_client_code_generation(), "{:?}", ty);
}
assert_not_valid(AlgebraicType::product([AlgebraicType::U8, bad_inner_1.clone()]));
assert_not_valid(AlgebraicType::product([AlgebraicType::U8, bad_inner_2.clone()]));
assert_not_valid(AlgebraicType::sum([AlgebraicType::U8, bad_inner_1.clone()]));
assert_not_valid(AlgebraicType::sum([AlgebraicType::U8, bad_inner_2.clone()]));
assert_not_valid(AlgebraicType::array(bad_inner_1.clone()));
assert_not_valid(AlgebraicType::array(bad_inner_2.clone()));
assert_not_valid(AlgebraicType::option(bad_inner_1.clone()));
assert_not_valid(AlgebraicType::option(bad_inner_2.clone()));
assert_not_valid(AlgebraicType::map(AlgebraicType::U8, bad_inner_1.clone()));
assert_not_valid(AlgebraicType::map(AlgebraicType::U8, bad_inner_2.clone()));
assert_not_valid(AlgebraicType::map(bad_inner_1.clone(), AlgebraicType::U8));
assert_not_valid(AlgebraicType::map(bad_inner_2.clone(), AlgebraicType::U8));
assert_not_valid(AlgebraicType::option(AlgebraicType::array(AlgebraicType::option(
bad_inner_1.clone(),
))));
}
}