1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//! # space-search
//!
//! A library providing basic utilities for performing generic depth-first, breadth-first, and heuristic-guided search space exploration algorithms.
//!
//! Implement [`Searchable`] to perform breadth-first or depth-first searching, and implement [`ScoredSearchable`] to perform heuristically guided search space exploration. Pass them to the [`Searcher`] and [`ScoredSearcher`] structs respectively to create iterators that will search the space for a solution.
//!
//! Implement `Eq + Hash + Clone` for your search space state type to benefit from prior explored state checking optimization; if youre unable to, then use the [`ScoredSearcher`] or [`ScoredUnhashableSearcher`] iterators, which do not require these additional bounds, but will likely explore the space much less efficiently.
//!
//! When implementing [`ScoredSearcher`], make sure that higher scoring states are closer to a solution.
//!
//! ```
//! use space_search::*;
//! use std::{vec, hash::Hash};
//!
//! #[derive(Clone, Debug, PartialEq, Eq, Hash)]
//! struct Pos(i32, i32);
//!
//! impl Searchable for Pos {
//!     type NextMoveIterator = vec::IntoIter<Pos>;
//!
//!     fn next_states(&self) -> Self::NextMoveIterator {
//!         let &Pos(x, y) = self;
//!         vec![
//!             Pos(x - 1, y),
//!             Pos(x, y - 1),
//!             Pos(x + 1, y),
//!             Pos(x, y + 1),
//!         ].into_iter()
//!     }
//!
//!     fn is_solution(&self) -> bool {
//!         let &Pos(x, y) = self;
//!         x == 5 && y == 5
//!     }
//! }
//!
//! let mut searcher = Searcher::new(Pos(0, 0));
//! assert_eq!(searcher.next(), Some(Pos(5, 5)));
//! ```

use std::{
    collections::{BinaryHeap, HashSet, VecDeque},
    hash::Hash,
};

/// Basic trait for depth-first and breadth-first search space exploration.
pub trait Searchable {
    type NextMoveIterator: Iterator<Item = Self>;

    /// Yield all adjacent explorable states reachable from this state.
    fn next_states(&self) -> Self::NextMoveIterator;

    /// Return `true` if this state is a solution state.
    fn is_solution(&self) -> bool;
}

/// Optimized breadth-first / depth-first state space exploration iterator.
pub struct Searcher<S> {
    explored: HashSet<S>,
    fringe: VecDeque<S>,

    /// Toggle depth-first searching on. By default, breadth-first search is used.
    /// Enable this flag to perform depth-first search instead.
    pub depth_first: bool,
}

impl<S> Searcher<S> {
    /// Create a new search iterator from an initial state.
    pub fn new(initial_state: S) -> Self {
        Self {
            explored: HashSet::new(),
            fringe: VecDeque::from([initial_state]),
            depth_first: false,
        }
    }

    /// Create a new search iterator from a default initial state.
    pub fn new_with_default() -> Self
    where
        S: Default,
    {
        Self::new(Default::default())
    }
}

impl<S> Iterator for Searcher<S>
where
    S: Searchable + Clone + Hash + Eq,
{
    type Item = S;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let current_state = self.fringe.pop_back()?;

            if current_state.is_solution() {
                return Some(current_state);
            }

            for state in current_state.next_states() {
                if !self.explored.contains(&state) {
                    self.explored.insert(state.clone());
                    if self.depth_first {
                        self.fringe.push_back(state);
                    } else {
                        self.fringe.push_front(state);
                    }
                }
            }
        }
    }
}

/// Unoptimized breadth-first / depth-first search space exploration iterator.
/// 
/// Use this instead of [`Searcher`] if implementing `Clone + Eq + Hash` for your [`Searchable`] type
/// is infeasible or impractical for whatever reason, or if you're running into memory
/// limitations from the optimized implementation. 
pub struct UnhashableSearcher<S> {
    fringe: VecDeque<S>,

    /// Toggle depth-first searching on. By default, breadth-first search is used.
    /// Enable this flag to perform depth-first search instead.
    pub depth_first: bool,
}

impl<S> UnhashableSearcher<S> {
    /// Create a new unoptimized iterator from an initial state.
    pub fn new(initial_state: S) -> Self {
        Self {
            fringe: VecDeque::from([initial_state]),
            depth_first: false,
        }
    }

    /// Create a new unoptimized iterator from a default state.
    pub fn new_with_default() -> Self
    where
        S: Default,
    {
        Self::new(Default::default())
    }
}

impl<S> Iterator for UnhashableSearcher<S>
where
    S: Searchable,
{
    type Item = S;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let current_state = self.fringe.pop_back()?;

            if current_state.is_solution() {
                return Some(current_state);
            }

            for state in current_state.next_states() {
                if self.depth_first {
                    self.fringe.push_back(state);
                } else {
                    self.fringe.push_front(state);
                }
            }
        }
    }
}

/// Trait for search space exploration guided by a heuristic. 
/// 
/// New states are explored in the order of
/// highest-scoring first, biasing the search exploration in the direction of a solution. Ensure the scores
/// returned by `score(self)` are increasing with the proximity to a solution.
pub trait ScoredSearchable: Searchable {
    type Score: Ord;

    /// Score function used for heuristic exploration. New states are explored in the order of
    /// highest-scoring first; ensure the scores
    /// returned by this function increase with the proximity to a solution.
    fn score(&self) -> Self::Score;
}

struct OrderedSearchable<T, C> {
    state: T,
    score: C,
}

impl<T, C> PartialEq for OrderedSearchable<T, C>
where
    C: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.score == other.score
    }
}

impl<T, C> Eq for OrderedSearchable<T, C> where C: Eq {}

impl<T, C> PartialOrd for OrderedSearchable<T, C>
where
    C: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.score.partial_cmp(&other.score)
    }
}

impl<T, C> Ord for OrderedSearchable<T, C>
where
    C: Ord,
{
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.score.cmp(&other.score)
    }
}

/// Optimized heuristic-guided search space exploration iterator.
pub struct ScoredSearcher<S: ScoredSearchable> {
    explored: HashSet<S>,
    fringe: BinaryHeap<OrderedSearchable<S, S::Score>>,
}

impl<S: ScoredSearchable> ScoredSearcher<S> {
    /// Create a new guided search iterator from an initial state.
    pub fn new(initial_state: S) -> Self {
        let score = initial_state.score();
        Self {
            explored: HashSet::new(),
            fringe: BinaryHeap::from([OrderedSearchable {
                state: initial_state,
                score,
            }]),
        }
    }

    /// Create a new guided search iterator from a default state.
    pub fn new_with_default() -> Self
    where
        S: Default,
    {
        Self::new(Default::default())
    }
}

impl<S: ScoredSearchable> Iterator for ScoredSearcher<S>
where
    S: Clone + Hash + Eq,
{
    type Item = S;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let current_state = self.fringe.pop()?.state;

            if current_state.is_solution() {
                return Some(current_state);
            }

            for state in current_state.next_states() {
                if !self.explored.contains(&state) {
                    self.explored.insert(state.clone());
                    let score = state.score();
                    self.fringe.push(OrderedSearchable { state, score });
                }
            }
        }
    }
}

/// Unoptimized heuristic-guided search space exploration iterator.
/// 
/// Use this instead of [`ScoredSearcher`] if implementing `Clone + Eq + Hash` for your [`ScoredSearchable`] type
/// is infeasible or impractical for whatever reason, or if you're running into memory
/// limitations from the optimized implementation. 
pub struct ScoredUnhashableSearcher<S: ScoredSearchable> {
    fringe: BinaryHeap<OrderedSearchable<S, S::Score>>,
}

impl<S: ScoredSearchable> ScoredUnhashableSearcher<S> {
    /// Create a new unoptimizd guided search iterator from an initial state.
    pub fn new(initial_state: S) -> Self {
        let score = initial_state.score();
        Self {
            fringe: BinaryHeap::from([OrderedSearchable {
                state: initial_state,
                score,
            }]),
        }
    }

    /// Create a new unoptimizd guided search iterator from a default state.
    pub fn new_with_default() -> Self
    where
        S: Default,
    {
        Self::new(Default::default())
    }
}

impl<S: ScoredSearchable> Iterator for ScoredUnhashableSearcher<S> {
    type Item = S;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let current_state = self.fringe.pop()?.state;

            if current_state.is_solution() {
                return Some(current_state);
            }

            for state in current_state.next_states() {
                let score = state.score();
                self.fringe.push(OrderedSearchable { state, score });
            }
        }
    }
}