1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! Provides an `Iterator` that yields elements in order of interval starting points.
use crate::interval_tree::interval::IntervalType;
use crate::interval_tree::interval_tree_node::{ChildNode, IntervalTreeNode};
use crate::interval_tree::IntervalTreeEntry;

#[derive(Debug)]
enum State<'a, T, D>
where
    T: IntervalType,
{
    Initial,
    EmitLeft(Box<InorderIterator<'a, T, D>>),
    EmitSelf,
    EmitRight(Box<InorderIterator<'a, T, D>>),
    Done,
}

#[derive(Debug)]
pub struct InorderIterator<'a, T, D>
where
    T: IntervalType,
{
    root: Option<&'a IntervalTreeNode<T, D>>,
    current_state: State<'a, T, D>,
}

impl<'a, T, D> InorderIterator<'a, T, D>
where
    T: IntervalType,
{
    pub(crate) fn new(root: &'a IntervalTreeNode<T, D>) -> Self {
        Self {
            root: Some(root),
            current_state: State::Initial,
        }
    }

    pub(crate) fn empty() -> Self {
        Self {
            root: None,
            current_state: State::Done,
        }
    }
}

impl<'a, T, D> Iterator for InorderIterator<'a, T, D>
where
    T: IntervalType,
{
    type Item = &'a IntervalTreeEntry<T, D>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.root.is_none() {
            return None;
        }

        let root = self.root.unwrap();

        loop {
            match &mut self.current_state {
                // The initial state is entered always.
                State::Initial => {
                    if let Some(left) = &root.left {
                        let iter = left.iter_inorder();
                        self.current_state = State::EmitLeft(Box::new(iter))
                    } else {
                        self.current_state = State::EmitSelf;
                    }
                }
                // Only happens when there is a left child,
                // enumerate until it is exhausted.
                State::EmitLeft(iter) => {
                    if let Some(value) = iter.next() {
                        return Some(value);
                    }
                    self.current_state = State::EmitSelf;
                }
                // The "self" state is entered always.
                State::EmitSelf => {
                    if let Some(right) = &root.right {
                        let iter = right.iter_inorder();
                        self.current_state = State::EmitRight(Box::new(iter));
                    } else {
                        self.current_state = State::Done;
                    }
                    return Some(&root.entry);
                }
                // Only happens when there is a right child,
                // enumerate until it is exhausted.
                State::EmitRight(iter) => {
                    if let Some(value) = iter.next() {
                        return Some(value);
                    }
                    self.current_state = State::Done;
                }
                // The "Done" state is entered last.
                State::Done => {
                    return None;
                }
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.root.is_none() {
            return (0, None);
        }

        let size = self.root.unwrap().len();
        return (size, Some(size));
    }

    fn count(self) -> usize
    where
        Self: Sized,
    {
        if let Some(node) = self.root {
            node.len()
        } else {
            0
        }
    }

    fn last(self) -> Option<Self::Item> {
        if self.root.is_none() {
            return None;
        }

        let mut token = self.root.unwrap();

        while token.right.is_some() {
            token = token.right.as_ref().unwrap();
        }

        Some(&token.entry)
    }

    fn for_each<F>(self, mut f: F)
    where
        F: FnMut(Self::Item),
    {
        fn inorder<'a, T, D, F>(node: &'a IntervalTreeNode<T, D>, f: &mut F)
        where
            F: FnMut(&'a IntervalTreeEntry<T, D>),
            T: IntervalType,
        {
            inorder_child(&node.left, f);
            (*f)(&node.entry);
            inorder_child(&node.right, f);
        }

        fn inorder_child<'a, T, D, F>(node: &'a ChildNode<T, D>, f: &mut F)
        where
            F: FnMut(&'a IntervalTreeEntry<T, D>),
            T: IntervalType,
        {
            if node.is_none() {
                return;
            }

            inorder(&node.as_ref().unwrap(), f);
        }

        if let Some(root) = self.root {
            inorder(&root, &mut f);
        }
    }
}

#[cfg(test)]
mod test {
    use crate::interval_tree::interval_tree_node::{test::construct_test_root_node, ChildNode};
    use crate::interval_tree::{InorderIterator, IntervalTreeNode, IntervalType};

    #[test]
    fn size_hint_when_empty_works() {
        let iter = InorderIterator::<i32, ()>::empty();
        let (min, max) = iter.size_hint();
        assert_eq!(min, 0);
        assert_eq!(max, None);
    }

    #[test]
    fn size_hint_works() {
        let root = construct_test_root_node();
        let (min, max) = root.iter_inorder().size_hint();
        assert_eq!(min, 6);
        assert_eq!(max, Some(6));
    }

    #[test]
    fn count_when_empty_works() {
        let iter = InorderIterator::<i32, ()>::empty();
        assert_eq!(iter.count(), 0);
    }

    #[test]
    fn count_works() {
        let root = construct_test_root_node();
        let count = root.iter_inorder().count();
        assert_eq!(count, 6);
    }

    #[test]
    fn last_works() {
        let root = construct_test_root_node();
        let last = root.iter_inorder().last();
        assert!(last.is_some());
        let last = last.unwrap();
        assert_eq!(last.interval.start, 30);
        assert_eq!(last.interval.end, 40);
    }

    #[test]
    fn iteration_when_empty_works() {
        let mut iter = InorderIterator::<i32, ()>::empty();
        assert!(iter.next().is_none());
    }

    #[test]
    fn iteration_works() {
        let root = construct_test_root_node();

        // Collect the expected nodes.
        let mut expected = Vec::default();
        collect_inorder(&root, &mut expected);

        // Reverse the collection for easier handling.
        // This allows us to pop elements from the back until
        // the set is empty.
        expected.reverse();

        // Act / Assert
        for node in root.iter_inorder() {
            let expected_node = expected.pop();
            assert!(expected_node.is_some());
            assert_eq!(expected_node.unwrap().entry.interval, node.interval);
        }
    }

    #[test]
    fn for_each_works() {
        let root = construct_test_root_node();

        // Collect the expected nodes.
        let mut expected = Vec::default();
        collect_inorder(&root, &mut expected);

        // Act
        let mut collected = Vec::default();
        root.iter_inorder().for_each(|node| collected.push(node));

        // Assert
        assert_eq!(expected.len(), collected.len());
        for (expected_node, node) in expected.into_iter().zip(collected) {
            assert_eq!(expected_node.entry.interval, node.interval);
        }
    }

    fn collect_inorder<'a, T, D>(
        node: &'a IntervalTreeNode<T, D>,
        out: &mut Vec<&'a IntervalTreeNode<T, D>>,
    ) where
        T: IntervalType,
    {
        collect_inorder_child(&node.left, out);
        out.push(node);
        collect_inorder_child(&node.right, out);
    }

    fn collect_inorder_child<'a, T, D>(
        node: &'a ChildNode<T, D>,
        out: &mut Vec<&'a IntervalTreeNode<T, D>>,
    ) where
        T: IntervalType,
    {
        if node.is_none() {
            return;
        }

        collect_inorder(&node.as_ref().unwrap(), out);
    }
}