1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use p3_baby_bear::{BabyBear, DiffusionMatrixBabyBear};
use p3_commit::{ExtensionMmcs, TwoAdicMultiplicativeCoset};
use p3_field::{extension::BinomialExtensionField, AbstractField, Field, TwoAdicField};
use p3_fri::FriConfig;
use p3_merkle_tree::FieldMerkleTreeMmcs;
use p3_poseidon2::{Poseidon2, Poseidon2ExternalMatrixGeneral};
use p3_symmetric::{PaddingFreeSponge, TruncatedPermutation};
use sp1_recursion_compiler::{
    asm::AsmConfig,
    ir::{Array, Builder, Config, Felt, MemVariable, Var},
};
use sp1_recursion_core::{
    air::ChallengerPublicValues,
    runtime::{DIGEST_SIZE, PERMUTATION_WIDTH},
};
use sp1_stark::{
    air::MachineAir, baby_bear_poseidon2::BabyBearPoseidon2, Dom, ShardProof, StarkGenericConfig,
    StarkMachine, StarkVerifyingKey,
};

use crate::{
    challenger::DuplexChallengerVariable,
    fri::{types::FriConfigVariable, TwoAdicMultiplicativeCosetVariable},
    stark::EMPTY,
    types::{QuotientDataValues, VerifyingKeyVariable},
};

type SC = BabyBearPoseidon2;
type F = <SC as StarkGenericConfig>::Val;
type EF = <SC as StarkGenericConfig>::Challenge;
type C = AsmConfig<F, EF>;
type Val = BabyBear;
type Challenge = BinomialExtensionField<Val, 4>;
type Perm = Poseidon2<Val, Poseidon2ExternalMatrixGeneral, DiffusionMatrixBabyBear, 16, 7>;
type Hash = PaddingFreeSponge<Perm, 16, 8, 8>;
type Compress = TruncatedPermutation<Perm, 2, 8, 16>;
type ValMmcs =
    FieldMerkleTreeMmcs<<Val as Field>::Packing, <Val as Field>::Packing, Hash, Compress, 8>;
type ChallengeMmcs = ExtensionMmcs<Val, Challenge, ValMmcs>;
type RecursionConfig = AsmConfig<Val, Challenge>;
type RecursionBuilder = Builder<RecursionConfig>;

pub fn const_fri_config(
    builder: &mut RecursionBuilder,
    config: &FriConfig<ChallengeMmcs>,
) -> FriConfigVariable<RecursionConfig> {
    let two_addicity = Val::TWO_ADICITY;
    let mut generators = builder.dyn_array(two_addicity);
    let mut subgroups = builder.dyn_array(two_addicity);
    for i in 0..two_addicity {
        let constant_generator = Val::two_adic_generator(i);
        builder.set(&mut generators, i, constant_generator);

        let constant_domain = TwoAdicMultiplicativeCoset { log_n: i, shift: Val::one() };
        let domain_value: TwoAdicMultiplicativeCosetVariable<_> = builder.constant(constant_domain);
        builder.set(&mut subgroups, i, domain_value);
    }
    FriConfigVariable {
        log_blowup: builder.eval(BabyBear::from_canonical_usize(config.log_blowup)),
        blowup: builder.eval(BabyBear::from_canonical_usize(1 << config.log_blowup)),
        num_queries: builder.eval(BabyBear::from_canonical_usize(config.num_queries)),
        proof_of_work_bits: builder.eval(BabyBear::from_canonical_usize(config.proof_of_work_bits)),
        subgroups,
        generators,
    }
}

pub fn clone<T: MemVariable<C>>(builder: &mut RecursionBuilder, var: &T) -> T {
    let mut arr = builder.dyn_array(1);
    builder.set(&mut arr, 0, var.clone());
    builder.get(&arr, 0)
}

pub fn clone_array<T: MemVariable<C>>(
    builder: &mut RecursionBuilder,
    arr: &Array<C, T>,
) -> Array<C, T> {
    let mut new_arr = builder.dyn_array(arr.len());
    builder.range(0, arr.len()).for_each(|i, builder| {
        let var = builder.get(arr, i);
        builder.set(&mut new_arr, i, var);
    });
    new_arr
}

// OPT: this can be done much more efficiently, but in the meantime this should work
pub fn felt2var<C: Config>(builder: &mut Builder<C>, felt: Felt<C::F>) -> Var<C::N> {
    let bits = builder.num2bits_f(felt);
    builder.bits2num_v(&bits)
}

pub fn var2felt<C: Config>(builder: &mut Builder<C>, var: Var<C::N>) -> Felt<C::F> {
    let bits = builder.num2bits_v(var);
    builder.bits2num_f(&bits)
}

/// Asserts that the challenger variable is equal to a challenger in public values.
pub fn assert_challenger_eq_pv<C: Config>(
    builder: &mut Builder<C>,
    var: &DuplexChallengerVariable<C>,
    values: ChallengerPublicValues<Felt<C::F>>,
) {
    for i in 0..PERMUTATION_WIDTH {
        let element = builder.get(&var.sponge_state, i);
        builder.assert_felt_eq(element, values.sponge_state[i]);
    }
    let num_inputs_var = felt2var(builder, values.num_inputs);
    builder.assert_var_eq(var.nb_inputs, num_inputs_var);
    let mut input_buffer_array: Array<_, Felt<_>> = builder.dyn_array(PERMUTATION_WIDTH);
    for i in 0..PERMUTATION_WIDTH {
        builder.set(&mut input_buffer_array, i, values.input_buffer[i]);
    }
    builder.range(0, num_inputs_var).for_each(|i, builder| {
        let element = builder.get(&var.input_buffer, i);
        let values_element = builder.get(&input_buffer_array, i);
        builder.assert_felt_eq(element, values_element);
    });
    let num_outputs_var = felt2var(builder, values.num_outputs);
    builder.assert_var_eq(var.nb_outputs, num_outputs_var);
    let mut output_buffer_array: Array<_, Felt<_>> = builder.dyn_array(PERMUTATION_WIDTH);
    for i in 0..PERMUTATION_WIDTH {
        builder.set(&mut output_buffer_array, i, values.output_buffer[i]);
    }
    builder.range(0, num_outputs_var).for_each(|i, builder| {
        let element = builder.get(&var.output_buffer, i);
        let values_element = builder.get(&output_buffer_array, i);
        builder.assert_felt_eq(element, values_element);
    });
}

/// Assigns a challenger variable from a challenger in public values.
pub fn assign_challenger_from_pv<C: Config>(
    builder: &mut Builder<C>,
    dst: &mut DuplexChallengerVariable<C>,
    values: ChallengerPublicValues<Felt<C::F>>,
) {
    for i in 0..PERMUTATION_WIDTH {
        builder.set(&mut dst.sponge_state, i, values.sponge_state[i]);
    }
    let num_inputs_var = felt2var(builder, values.num_inputs);
    builder.assign(dst.nb_inputs, num_inputs_var);
    for i in 0..PERMUTATION_WIDTH {
        builder.set(&mut dst.input_buffer, i, values.input_buffer[i]);
    }
    let num_outputs_var = felt2var(builder, values.num_outputs);
    builder.assign(dst.nb_outputs, num_outputs_var);
    for i in 0..PERMUTATION_WIDTH {
        builder.set(&mut dst.output_buffer, i, values.output_buffer[i]);
    }
}

pub fn get_challenger_public_values<C: Config>(
    builder: &mut Builder<C>,
    var: &DuplexChallengerVariable<C>,
) -> ChallengerPublicValues<Felt<C::F>> {
    let sponge_state = core::array::from_fn(|i| builder.get(&var.sponge_state, i));
    let num_inputs = var2felt(builder, var.nb_inputs);
    let input_buffer = core::array::from_fn(|i| builder.get(&var.input_buffer, i));
    let num_outputs = var2felt(builder, var.nb_outputs);
    let output_buffer = core::array::from_fn(|i| builder.get(&var.output_buffer, i));

    ChallengerPublicValues { sponge_state, num_inputs, input_buffer, num_outputs, output_buffer }
}

/// Hash the verifying key + prep domains into a single digest.
/// poseidon2( commit[0..8] || pc_start || prep_domains[N].{log_n, .size, .shift, .g})
pub fn hash_vkey<C: Config>(
    builder: &mut Builder<C>,
    vk: &VerifyingKeyVariable<C>,
) -> Array<C, Felt<C::F>> {
    let domain_slots: Var<_> = builder.eval(vk.prep_domains.len() * 4);
    let vkey_slots: Var<_> = builder.constant(C::N::from_canonical_usize(DIGEST_SIZE + 1));
    let total_slots: Var<_> = builder.eval(vkey_slots + domain_slots);
    let mut inputs = builder.dyn_array(total_slots);
    builder.range(0, DIGEST_SIZE).for_each(|i, builder| {
        let element = builder.get(&vk.commitment, i);
        builder.set(&mut inputs, i, element);
    });
    builder.set(&mut inputs, DIGEST_SIZE, vk.pc_start);
    let four: Var<_> = builder.constant(C::N::from_canonical_usize(4));
    let one: Var<_> = builder.constant(C::N::one());
    builder.range(0, vk.prep_domains.len()).for_each(|i, builder| {
        let sorted_index = builder.get(&vk.preprocessed_sorted_idxs, i);
        let domain = builder.get(&vk.prep_domains, i);
        let log_n_index: Var<_> = builder.eval(vkey_slots + sorted_index * four);
        let size_index: Var<_> = builder.eval(log_n_index + one);
        let shift_index: Var<_> = builder.eval(size_index + one);
        let g_index: Var<_> = builder.eval(shift_index + one);
        let log_n_felt = var2felt(builder, domain.log_n);
        let size_felt = var2felt(builder, domain.size);
        builder.set(&mut inputs, log_n_index, log_n_felt);
        builder.set(&mut inputs, size_index, size_felt);
        builder.set(&mut inputs, shift_index, domain.shift);
        builder.set(&mut inputs, g_index, domain.g);
    });
    builder.poseidon2_hash(&inputs)
}

pub(crate) fn get_sorted_indices<SC: StarkGenericConfig, A: MachineAir<SC::Val>>(
    machine: &StarkMachine<SC, A>,
    proof: &ShardProof<SC>,
) -> Vec<usize> {
    machine
        .chips_sorted_indices(proof)
        .into_iter()
        .map(|x| match x {
            Some(x) => x,
            None => EMPTY,
        })
        .collect()
}

pub(crate) fn get_preprocessed_data<SC: StarkGenericConfig, A: MachineAir<SC::Val>>(
    machine: &StarkMachine<SC, A>,
    vk: &StarkVerifyingKey<SC>,
) -> (Vec<usize>, Vec<Dom<SC>>) {
    let chips = machine.chips();
    let (prep_sorted_indices, prep_domains) = machine
        .preprocessed_chip_ids()
        .into_iter()
        .map(|chip_idx| {
            let name = chips[chip_idx].name().clone();
            let prep_sorted_idx = vk.chip_ordering[&name];
            (prep_sorted_idx, vk.chip_information[prep_sorted_idx].1)
        })
        .unzip();
    (prep_sorted_indices, prep_domains)
}

pub(crate) fn get_chip_quotient_data<SC: StarkGenericConfig, A: MachineAir<SC::Val>>(
    machine: &StarkMachine<SC, A>,
    proof: &ShardProof<SC>,
) -> Vec<QuotientDataValues> {
    machine
        .shard_chips_ordered(&proof.chip_ordering)
        .map(|chip| {
            let log_quotient_degree = chip.log_quotient_degree();
            QuotientDataValues { log_quotient_degree, quotient_size: 1 << log_quotient_degree }
        })
        .collect()
}