1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
use std::array;
use std::borrow::{Borrow, BorrowMut};
use std::marker::PhantomData;
use itertools::Itertools;
use p3_baby_bear::BabyBear;
use p3_commit::TwoAdicMultiplicativeCoset;
use p3_field::{AbstractField, PrimeField32, TwoAdicField};
use sp1_core::air::{MachineAir, PublicValues, WORD_SIZE};
use sp1_core::air::{Word, POSEIDON_NUM_WORDS, PV_DIGEST_NUM_WORDS};
use sp1_core::cpu::MAX_CPU_LOG_DEGREE;
use sp1_core::stark::StarkMachine;
use sp1_core::stark::{Com, RiscvAir, ShardProof, StarkGenericConfig, StarkVerifyingKey};
use sp1_core::utils::BabyBearPoseidon2;
use sp1_primitives::types::RecursionProgramType;
use sp1_recursion_compiler::config::InnerConfig;
use sp1_recursion_compiler::ir::{Array, Builder, Config, Ext, ExtConst, Felt, Var};
use sp1_recursion_compiler::prelude::DslVariable;
use sp1_recursion_compiler::prelude::*;
use sp1_recursion_core::air::{RecursionPublicValues, RECURSIVE_PROOF_NUM_PV_ELTS};
use sp1_recursion_core::runtime::{RecursionProgram, DIGEST_SIZE};
use crate::challenger::{CanObserveVariable, DuplexChallengerVariable};
use crate::fri::TwoAdicFriPcsVariable;
use crate::hints::Hintable;
use crate::stark::{StarkVerifier, EMPTY};
use crate::types::ShardProofVariable;
use crate::types::VerifyingKeyVariable;
use crate::utils::{const_fri_config, felt2var, get_challenger_public_values, hash_vkey, var2felt};
use super::utils::{assert_complete, commit_public_values};
/// A program for recursively verifying a batch of SP1 proofs.
#[derive(Debug, Clone, Copy)]
pub struct SP1RecursiveVerifier<C: Config, SC: StarkGenericConfig> {
_phantom: PhantomData<(C, SC)>,
}
pub struct SP1RecursionMemoryLayout<'a, SC: StarkGenericConfig, A: MachineAir<SC::Val>> {
pub vk: &'a StarkVerifyingKey<SC>,
pub machine: &'a StarkMachine<SC, A>,
pub shard_proofs: Vec<ShardProof<SC>>,
pub leaf_challenger: &'a SC::Challenger,
pub initial_reconstruct_challenger: SC::Challenger,
pub is_complete: bool,
}
#[derive(DslVariable, Clone)]
pub struct SP1RecursionMemoryLayoutVariable<C: Config> {
pub vk: VerifyingKeyVariable<C>,
pub shard_proofs: Array<C, ShardProofVariable<C>>,
pub leaf_challenger: DuplexChallengerVariable<C>,
pub initial_reconstruct_challenger: DuplexChallengerVariable<C>,
pub is_complete: Var<C::N>,
}
impl SP1RecursiveVerifier<InnerConfig, BabyBearPoseidon2> {
/// Create a new instance of the program for the [BabyBearPoseidon2] config.
pub fn build(
machine: &StarkMachine<BabyBearPoseidon2, RiscvAir<BabyBear>>,
) -> RecursionProgram<BabyBear> {
let mut builder = Builder::<InnerConfig>::new(RecursionProgramType::Core);
let input: SP1RecursionMemoryLayoutVariable<_> = builder.uninit();
SP1RecursionMemoryLayout::<BabyBearPoseidon2, RiscvAir<_>>::witness(&input, &mut builder);
let pcs = TwoAdicFriPcsVariable {
config: const_fri_config(&mut builder, machine.config().pcs().fri_config()),
};
SP1RecursiveVerifier::verify(&mut builder, &pcs, machine, input);
builder.halt();
builder.compile_program()
}
}
impl<C: Config, SC: StarkGenericConfig> SP1RecursiveVerifier<C, SC>
where
C::F: PrimeField32 + TwoAdicField,
SC: StarkGenericConfig<
Val = C::F,
Challenge = C::EF,
Domain = TwoAdicMultiplicativeCoset<C::F>,
>,
Com<SC>: Into<[SC::Val; DIGEST_SIZE]>,
{
/// Verify a batch of SP1 shard proofs and aggregate their public values.
///
/// This program represents a first recursive step in the verification of an SP1 proof
/// consisting of one or more shards. Each shard proof is verified and its public values are
/// aggregated into a single set representing the start and end state of the program execution
/// across all shards.
///
/// # Constraints
///
/// ## Verifying the STARK proofs.
/// For each shard, the verifier asserts the correctness of the STARK proof which is composed
/// of verifying the FRI proof for openings and verifying the constraints.
///
/// ## Aggregating the shard public values.
/// See [SP1Prover::verify] for the verification algorithm of a complete SP1 proof. In this
/// function, we are aggregating several shard proofs and attesting to an aggregated state which
/// represents all the shards.
///
/// ## The leaf challenger.
/// A key difference between the recursive tree verification and the complete one in
/// [SP1Prover::verify] is that the recursive verifier has no way of reconstructing the
/// chanllenger only from a part of the shard proof. Therefore, the value of the leaf challenger
/// is witnessed in the program and the verifier asserts correctness given this challenger.
/// In the course of the recursive verification, the challenger is reconstructed by observing
/// the commitments one by one, and in the final step, the challenger is asserted to be the same
/// as the one witnessed here.
pub fn verify(
builder: &mut Builder<C>,
pcs: &TwoAdicFriPcsVariable<C>,
machine: &StarkMachine<SC, RiscvAir<SC::Val>>,
input: SP1RecursionMemoryLayoutVariable<C>,
) {
// Read input.
let SP1RecursionMemoryLayoutVariable {
vk,
shard_proofs,
leaf_challenger,
initial_reconstruct_challenger,
is_complete,
} = input;
// Initialize shard variables.
let initial_shard = builder.uninit();
let current_shard = builder.uninit();
// Initialize execution shard variables.
let initial_execution_shard = builder.uninit();
let current_execution_shard = builder.uninit();
// Initialize program counter variables.
let start_pc = builder.uninit();
let current_pc = builder.uninit();
// Initialize memory initialization and finalization variables.
let initial_previous_init_addr_bits: [Felt<_>; 32] = array::from_fn(|_| builder.uninit());
let initial_previous_finalize_addr_bits: [Felt<_>; 32] =
array::from_fn(|_| builder.uninit());
let current_init_addr_bits: [Felt<_>; 32] = array::from_fn(|_| builder.uninit());
let current_finalize_addr_bits: [Felt<_>; 32] = array::from_fn(|_| builder.uninit());
// Initialize the exit code variable.
let exit_code: Felt<_> = builder.uninit();
// Initialize the public values digest.
let committed_value_digest: [Word<Felt<_>>; PV_DIGEST_NUM_WORDS] =
array::from_fn(|_| Word(array::from_fn(|_| builder.uninit())));
// Initialize the deferred proofs digest.
let deferred_proofs_digest: [Felt<_>; POSEIDON_NUM_WORDS] =
array::from_fn(|_| builder.uninit());
// Initialize the challenger variables.
let leaf_challenger_public_values = get_challenger_public_values(builder, &leaf_challenger);
let mut reconstruct_challenger: DuplexChallengerVariable<_> =
initial_reconstruct_challenger.copy(builder);
// Initialize the cumulative sum.
let cumulative_sum: Ext<_, _> = builder.eval(C::EF::zero().cons());
// Assert that the number of proofs is not zero.
builder.assert_usize_ne(shard_proofs.len(), 0);
// Verify proofs, validate transitions, and update accumulation variables.
builder.range(0, shard_proofs.len()).for_each(|i, builder| {
// Load the proof.
let proof = builder.get(&shard_proofs, i);
// Compute some flags about which chips exist in the shard.
let contains_cpu: Var<_> = builder.eval(C::N::zero());
let contains_memory_init: Var<_> = builder.eval(C::N::zero());
let contains_memory_finalize: Var<_> = builder.eval(C::N::zero());
for (i, chip) in machine.chips().iter().enumerate() {
let index = builder.get(&proof.sorted_idxs, i);
if chip.name() == "CPU" {
builder
.if_ne(index, C::N::from_canonical_usize(EMPTY))
.then(|builder| {
builder.assign(contains_cpu, C::N::one());
});
} else if chip.name() == "MemoryInit" {
builder
.if_ne(index, C::N::from_canonical_usize(EMPTY))
.then(|builder| {
builder.assign(contains_memory_init, C::N::one());
});
} else if chip.name() == "MemoryFinalize" {
builder
.if_ne(index, C::N::from_canonical_usize(EMPTY))
.then(|builder| {
builder.assign(contains_memory_finalize, C::N::one());
});
}
}
// Extract public values.
let mut pv_elements = Vec::new();
for i in 0..machine.num_pv_elts() {
let element = builder.get(&proof.public_values, i);
pv_elements.push(element);
}
let public_values: &PublicValues<Word<Felt<_>>, Felt<_>> =
pv_elements.as_slice().borrow();
// If this is the first proof in the batch, initialize the variables.
builder.if_eq(i, C::N::zero()).then(|builder| {
// Shard.
builder.assign(initial_shard, public_values.shard);
builder.assign(current_shard, public_values.shard);
// Execution shard.
builder.assign(initial_execution_shard, public_values.execution_shard);
builder.assign(current_execution_shard, public_values.execution_shard);
// Program counter.
builder.assign(start_pc, public_values.start_pc);
builder.assign(current_pc, public_values.start_pc);
// Memory initialization & finalization.
for ((bit, pub_bit), first_bit) in current_init_addr_bits
.iter()
.zip(public_values.previous_init_addr_bits.iter())
.zip(initial_previous_init_addr_bits.iter())
{
builder.assign(*bit, *pub_bit);
builder.assign(*first_bit, *pub_bit);
}
for ((bit, pub_bit), first_bit) in current_finalize_addr_bits
.iter()
.zip(public_values.previous_finalize_addr_bits.iter())
.zip(initial_previous_finalize_addr_bits.iter())
{
builder.assign(*bit, *pub_bit);
builder.assign(*first_bit, *pub_bit);
}
// Exit code.
builder.assign(exit_code, public_values.exit_code);
// Commited public values digests.
for (word, first_word) in committed_value_digest
.iter()
.zip_eq(public_values.committed_value_digest.iter())
{
for (byte, first_byte) in word.0.iter().zip_eq(first_word.0.iter()) {
builder.assign(*byte, *first_byte);
}
}
// Deferred proofs digests.
for (digest, first_digest) in deferred_proofs_digest
.iter()
.zip_eq(public_values.deferred_proofs_digest.iter())
{
builder.assign(*digest, *first_digest);
}
});
// If the shard is the first shard, assert that the initial challenger is equal to a
// fresh challenger observing the verifier key and the initial pc.
let shard = felt2var(builder, public_values.shard);
builder.if_eq(shard, C::N::one()).then(|builder| {
let mut first_initial_challenger = DuplexChallengerVariable::new(builder);
first_initial_challenger.observe(builder, vk.commitment.clone());
first_initial_challenger.observe(builder, vk.pc_start);
initial_reconstruct_challenger.assert_eq(builder, &first_initial_challenger);
});
// Verify the shard.
//
// Do not verify the cumulative sum here, since the permutation challenge is shared
// between all shards.
let mut challenger = leaf_challenger.copy(builder);
StarkVerifier::<C, SC>::verify_shard(
builder,
&vk,
pcs,
machine,
&mut challenger,
&proof,
false,
);
// First shard has a "CPU" constraint.
{
builder.if_eq(shard, C::N::one()).then(|builder| {
builder.assert_var_eq(contains_cpu, C::N::one());
});
}
// CPU log degree bound check constraints.
{
for (i, chip) in machine.chips().iter().enumerate() {
if chip.name() == "CPU" {
builder.if_eq(contains_cpu, C::N::one()).then(|builder| {
let index = builder.get(&proof.sorted_idxs, i);
let cpu_log_degree =
builder.get(&proof.opened_values.chips, index).log_degree;
let cpu_log_degree_lt_max: Var<_> = builder.eval(C::N::zero());
builder
.range(0, MAX_CPU_LOG_DEGREE + 1)
.for_each(|j, builder| {
builder.if_eq(j, cpu_log_degree).then(|builder| {
builder.assign(cpu_log_degree_lt_max, C::N::one());
});
});
builder.assert_var_eq(cpu_log_degree_lt_max, C::N::one());
});
}
}
}
// Shard constraints.
{
// Assert that the shard of the proof is equal to the current shard.
builder.assert_felt_eq(current_shard, public_values.shard);
// Increment the current shard by one.
builder.assign(current_shard, current_shard + C::F::one());
}
// Execution shard constraints.
let execution_shard = felt2var(builder, public_values.execution_shard);
{
// Assert that the shard of the proof is equal to the current shard.
builder.if_eq(contains_cpu, C::N::one()).then(|builder| {
builder.assert_felt_eq(current_execution_shard, public_values.execution_shard);
});
// If the shard has a "CPU" chip, then the execution shard should be incremented by 1.
builder.if_eq(contains_cpu, C::N::one()).then(|builder| {
builder.assign(
current_execution_shard,
current_execution_shard + C::F::one(),
);
});
}
// Program counter constraints.
{
// If it's the first shard (which is the first execution shard), then the start_pc
// should be vk.pc_start.
builder.if_eq(shard, C::N::one()).then(|builder| {
builder.assert_felt_eq(public_values.start_pc, vk.pc_start);
});
// Assert that the start_pc of the proof is equal to the current pc.
builder.assert_felt_eq(current_pc, public_values.start_pc);
// If it's not a shard with "CPU", then assert that the start_pc equals the next_pc.
builder.if_ne(contains_cpu, C::N::one()).then(|builder| {
builder.assert_felt_eq(public_values.start_pc, public_values.next_pc);
});
// If it's a shard with "CPU", then assert that the start_pc is not zero.
builder.if_eq(contains_cpu, C::N::one()).then(|builder| {
builder.assert_felt_ne(public_values.start_pc, C::F::zero());
});
// Update current_pc to be the end_pc of the current proof.
builder.assign(current_pc, public_values.next_pc);
}
// Exit code constraints.
{
// Assert that the exit code is zero (success) for all proofs.
builder.assert_felt_eq(exit_code, C::F::zero());
}
// Memory initialization & finalization constraints.
{
// Assert that `init_addr_bits` and `finalize_addr_bits` are zero for the first execution shard.
builder.if_eq(execution_shard, C::N::one()).then(|builder| {
// Assert that the MemoryInitialize address bits are zero.
for bit in current_init_addr_bits.iter() {
builder.assert_felt_eq(*bit, C::F::zero());
}
// Assert that the MemoryFinalize address bits are zero.
for bit in current_finalize_addr_bits.iter() {
builder.assert_felt_eq(*bit, C::F::zero());
}
});
// Assert that the MemoryInitialize address bits match the current loop variable.
for (bit, current_bit) in current_init_addr_bits
.iter()
.zip_eq(public_values.previous_init_addr_bits.iter())
{
builder.assert_felt_eq(*bit, *current_bit);
}
// Assert that the MemoryFinalize address bits match the current loop variable.
for (bit, current_bit) in current_finalize_addr_bits
.iter()
.zip_eq(public_values.previous_finalize_addr_bits.iter())
{
builder.assert_felt_eq(*bit, *current_bit);
}
// Assert that if MemoryInit is not present, then the address bits are the same.
builder
.if_ne(contains_memory_init, C::N::one())
.then(|builder| {
for (prev_bit, last_bit) in public_values
.previous_init_addr_bits
.iter()
.zip_eq(public_values.last_init_addr_bits.iter())
{
builder.assert_felt_eq(*prev_bit, *last_bit);
}
});
// Assert that if MemoryFinalize is not present, then the address bits are the same.
builder
.if_ne(contains_memory_finalize, C::N::one())
.then(|builder| {
for (prev_bit, last_bit) in public_values
.previous_finalize_addr_bits
.iter()
.zip_eq(public_values.last_finalize_addr_bits.iter())
{
builder.assert_felt_eq(*prev_bit, *last_bit);
}
});
// Update the MemoryInitialize address bits.
for (bit, pub_bit) in current_init_addr_bits
.iter()
.zip(public_values.last_init_addr_bits.iter())
{
builder.assign(*bit, *pub_bit);
}
// Update the MemoryFinalize address bits.
for (bit, pub_bit) in current_finalize_addr_bits
.iter()
.zip(public_values.last_finalize_addr_bits.iter())
{
builder.assign(*bit, *pub_bit);
}
}
// Digest constraints.
{
// If `commited_value_digest` is not zero, then `public_values.commited_value_digest
// should be the current value.
let is_zero: Var<_> = builder.eval(C::N::one());
#[allow(clippy::needless_range_loop)]
for i in 0..committed_value_digest.len() {
for j in 0..WORD_SIZE {
let d = felt2var(builder, committed_value_digest[i][j]);
builder.if_ne(d, C::N::zero()).then(|builder| {
builder.assign(is_zero, C::N::zero());
});
}
}
builder.if_eq(is_zero, C::N::zero()).then(|builder| {
#[allow(clippy::needless_range_loop)]
for i in 0..committed_value_digest.len() {
for j in 0..WORD_SIZE {
builder.assert_felt_eq(
committed_value_digest[i][j],
public_values.committed_value_digest[i][j],
);
}
}
});
// If it's not a shard with "CPU", then the committed value digest should not change.
builder.if_ne(contains_cpu, C::N::one()).then(|builder| {
#[allow(clippy::needless_range_loop)]
for i in 0..committed_value_digest.len() {
for j in 0..WORD_SIZE {
builder.assert_felt_eq(
committed_value_digest[i][j],
public_values.committed_value_digest[i][j],
);
}
}
});
// Update the committed value digest.
#[allow(clippy::needless_range_loop)]
for i in 0..committed_value_digest.len() {
for j in 0..WORD_SIZE {
builder.assign(
committed_value_digest[i][j],
public_values.committed_value_digest[i][j],
);
}
}
// If `deferred_proofs_digest` is not zero, then `public_values.deferred_proofs_digest
// should be the current value.
let is_zero: Var<_> = builder.eval(C::N::one());
#[allow(clippy::needless_range_loop)]
for i in 0..deferred_proofs_digest.len() {
let d = felt2var(builder, deferred_proofs_digest[i]);
builder.if_ne(d, C::N::zero()).then(|builder| {
builder.assign(is_zero, C::N::zero());
});
}
builder.if_eq(is_zero, C::N::zero()).then(|builder| {
#[allow(clippy::needless_range_loop)]
for i in 0..deferred_proofs_digest.len() {
builder.assert_felt_eq(
deferred_proofs_digest[i],
public_values.deferred_proofs_digest[i],
);
}
});
// If it's not a shard with "CPU", then the deferred proofs digest should not change.
builder.if_ne(contains_cpu, C::N::one()).then(|builder| {
#[allow(clippy::needless_range_loop)]
for i in 0..deferred_proofs_digest.len() {
builder.assert_felt_eq(
deferred_proofs_digest[i],
public_values.deferred_proofs_digest[i],
);
}
});
// Update the deferred proofs digest.
#[allow(clippy::needless_range_loop)]
for i in 0..deferred_proofs_digest.len() {
builder.assign(
deferred_proofs_digest[i],
public_values.deferred_proofs_digest[i],
);
}
}
// Verify that the number of shards is not too large.
builder.range_check_f(public_values.shard, 16);
// Update the reconstruct challenger.
reconstruct_challenger.observe(builder, proof.commitment.main_commit.clone());
for j in 0..machine.num_pv_elts() {
let element = builder.get(&proof.public_values, j);
reconstruct_challenger.observe(builder, element);
}
// Cumulative sum is updated by sums of all chips.
let opened_values = proof.opened_values.chips;
builder
.range(0, opened_values.len())
.for_each(|k, builder| {
let values = builder.get(&opened_values, k);
let sum = values.cumulative_sum;
builder.assign(cumulative_sum, cumulative_sum + sum);
});
});
// Write all values to the public values struct and commit to them.
{
// Compute the vk digest.
let vk_digest = hash_vkey(builder, &vk);
let vk_digest: [Felt<_>; DIGEST_SIZE] = array::from_fn(|i| builder.get(&vk_digest, i));
// Collect the public values for challengers.
let initial_challenger_public_values =
get_challenger_public_values(builder, &initial_reconstruct_challenger);
let final_challenger_public_values =
get_challenger_public_values(builder, &reconstruct_challenger);
// Collect the cumulative sum.
let cumulative_sum_array = builder.ext2felt(cumulative_sum);
let cumulative_sum_array = array::from_fn(|i| builder.get(&cumulative_sum_array, i));
// Collect the deferred proof digests.
let zero: Felt<_> = builder.eval(C::F::zero());
let start_deferred_digest = [zero; POSEIDON_NUM_WORDS];
let end_deferred_digest = [zero; POSEIDON_NUM_WORDS];
// Collect the is_complete flag.
let is_complete_felt = var2felt(builder, is_complete);
// Initialize the public values we will commit to.
let mut recursion_public_values_stream = [zero; RECURSIVE_PROOF_NUM_PV_ELTS];
let recursion_public_values: &mut RecursionPublicValues<_> =
recursion_public_values_stream.as_mut_slice().borrow_mut();
recursion_public_values.committed_value_digest = committed_value_digest;
recursion_public_values.deferred_proofs_digest = deferred_proofs_digest;
recursion_public_values.start_pc = start_pc;
recursion_public_values.next_pc = current_pc;
recursion_public_values.start_shard = initial_shard;
recursion_public_values.next_shard = current_shard;
recursion_public_values.start_execution_shard = initial_execution_shard;
recursion_public_values.next_execution_shard = current_execution_shard;
recursion_public_values.previous_init_addr_bits = initial_previous_init_addr_bits;
recursion_public_values.last_init_addr_bits = current_init_addr_bits;
recursion_public_values.previous_finalize_addr_bits =
initial_previous_finalize_addr_bits;
recursion_public_values.last_finalize_addr_bits = current_finalize_addr_bits;
recursion_public_values.sp1_vk_digest = vk_digest;
recursion_public_values.leaf_challenger = leaf_challenger_public_values;
recursion_public_values.start_reconstruct_challenger = initial_challenger_public_values;
recursion_public_values.end_reconstruct_challenger = final_challenger_public_values;
recursion_public_values.cumulative_sum = cumulative_sum_array;
recursion_public_values.start_reconstruct_deferred_digest = start_deferred_digest;
recursion_public_values.end_reconstruct_deferred_digest = end_deferred_digest;
recursion_public_values.exit_code = exit_code;
recursion_public_values.is_complete = is_complete_felt;
// If the proof represents a complete proof, make completeness assertions.
//
// *Remark*: In this program, this only happends if there is one shard and the program has
// no deferred proofs to verify. However, the completeness check is independent of these
// facts.
builder.if_eq(is_complete, C::N::one()).then(|builder| {
assert_complete(builder, recursion_public_values, &reconstruct_challenger)
});
commit_public_values(builder, recursion_public_values);
}
}
}