sp1_recursion_core/chips/
alu_ext.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
use core::borrow::Borrow;
use p3_air::{Air, BaseAir, PairBuilder};
use p3_field::{extension::BinomiallyExtendable, Field, PrimeField32};
use p3_matrix::{dense::RowMajorMatrix, Matrix};
use p3_maybe_rayon::prelude::*;
use sp1_core_machine::utils::next_power_of_two;
use sp1_derive::AlignedBorrow;
use sp1_stark::air::{ExtensionAirBuilder, MachineAir};
use std::{borrow::BorrowMut, iter::zip};

use crate::{builder::SP1RecursionAirBuilder, *};

pub const NUM_EXT_ALU_ENTRIES_PER_ROW: usize = 4;

#[derive(Default)]
pub struct ExtAluChip;

pub const NUM_EXT_ALU_COLS: usize = core::mem::size_of::<ExtAluCols<u8>>();

#[derive(AlignedBorrow, Debug, Clone, Copy)]
#[repr(C)]
pub struct ExtAluCols<F: Copy> {
    pub values: [ExtAluValueCols<F>; NUM_EXT_ALU_ENTRIES_PER_ROW],
}
const NUM_EXT_ALU_VALUE_COLS: usize = core::mem::size_of::<ExtAluValueCols<u8>>();

#[derive(AlignedBorrow, Debug, Clone, Copy)]
#[repr(C)]
pub struct ExtAluValueCols<F: Copy> {
    pub vals: ExtAluIo<Block<F>>,
}

pub const NUM_EXT_ALU_PREPROCESSED_COLS: usize = core::mem::size_of::<ExtAluPreprocessedCols<u8>>();

#[derive(AlignedBorrow, Debug, Clone, Copy)]
#[repr(C)]
pub struct ExtAluPreprocessedCols<F: Copy> {
    pub accesses: [ExtAluAccessCols<F>; NUM_EXT_ALU_ENTRIES_PER_ROW],
}

pub const NUM_EXT_ALU_ACCESS_COLS: usize = core::mem::size_of::<ExtAluAccessCols<u8>>();

#[derive(AlignedBorrow, Debug, Clone, Copy)]
#[repr(C)]
pub struct ExtAluAccessCols<F: Copy> {
    pub addrs: ExtAluIo<Address<F>>,
    pub is_add: F,
    pub is_sub: F,
    pub is_mul: F,
    pub is_div: F,
    pub mult: F,
}

impl<F: Field> BaseAir<F> for ExtAluChip {
    fn width(&self) -> usize {
        NUM_EXT_ALU_COLS
    }
}

impl<F: PrimeField32 + BinomiallyExtendable<D>> MachineAir<F> for ExtAluChip {
    type Record = ExecutionRecord<F>;

    type Program = crate::RecursionProgram<F>;

    fn name(&self) -> String {
        "ExtAlu".to_string()
    }

    fn preprocessed_width(&self) -> usize {
        NUM_EXT_ALU_PREPROCESSED_COLS
    }

    fn generate_preprocessed_trace(&self, program: &Self::Program) -> Option<RowMajorMatrix<F>> {
        // Allocating an intermediate `Vec` is faster.
        let instrs = program
            .instructions
            .iter() // Faster than using `rayon` for some reason. Maybe vectorization?
            .filter_map(|instruction| match instruction {
                Instruction::ExtAlu(x) => Some(x),
                _ => None,
            })
            .collect::<Vec<_>>();

        let nb_rows = instrs.len().div_ceil(NUM_EXT_ALU_ENTRIES_PER_ROW);
        let fixed_log2_rows = program.fixed_log2_rows(self);
        let padded_nb_rows = match fixed_log2_rows {
            Some(log2_rows) => 1 << log2_rows,
            None => next_power_of_two(nb_rows, None),
        };
        let mut values = vec![F::zero(); padded_nb_rows * NUM_EXT_ALU_PREPROCESSED_COLS];

        // Generate the trace rows & corresponding records for each chunk of events in parallel.
        let populate_len = instrs.len() * NUM_EXT_ALU_ACCESS_COLS;
        values[..populate_len].par_chunks_mut(NUM_EXT_ALU_ACCESS_COLS).zip_eq(instrs).for_each(
            |(row, instr)| {
                let ExtAluInstr { opcode, mult, addrs } = instr;
                let access: &mut ExtAluAccessCols<_> = row.borrow_mut();
                *access = ExtAluAccessCols {
                    addrs: addrs.to_owned(),
                    is_add: F::from_bool(false),
                    is_sub: F::from_bool(false),
                    is_mul: F::from_bool(false),
                    is_div: F::from_bool(false),
                    mult: mult.to_owned(),
                };
                let target_flag = match opcode {
                    ExtAluOpcode::AddE => &mut access.is_add,
                    ExtAluOpcode::SubE => &mut access.is_sub,
                    ExtAluOpcode::MulE => &mut access.is_mul,
                    ExtAluOpcode::DivE => &mut access.is_div,
                };
                *target_flag = F::from_bool(true);
            },
        );

        // Convert the trace to a row major matrix.
        Some(RowMajorMatrix::new(values, NUM_EXT_ALU_PREPROCESSED_COLS))
    }

    fn generate_dependencies(&self, _: &Self::Record, _: &mut Self::Record) {
        // This is a no-op.
    }

    fn generate_trace(&self, input: &Self::Record, _: &mut Self::Record) -> RowMajorMatrix<F> {
        let events = &input.ext_alu_events;
        let nb_rows = events.len().div_ceil(NUM_EXT_ALU_ENTRIES_PER_ROW);
        let fixed_log2_rows = input.fixed_log2_rows(self);
        let padded_nb_rows = match fixed_log2_rows {
            Some(log2_rows) => 1 << log2_rows,
            None => next_power_of_two(nb_rows, None),
        };
        let mut values = vec![F::zero(); padded_nb_rows * NUM_EXT_ALU_COLS];

        // Generate the trace rows & corresponding records for each chunk of events in parallel.
        let populate_len = events.len() * NUM_EXT_ALU_VALUE_COLS;
        values[..populate_len].par_chunks_mut(NUM_EXT_ALU_VALUE_COLS).zip_eq(events).for_each(
            |(row, &vals)| {
                let cols: &mut ExtAluValueCols<_> = row.borrow_mut();
                *cols = ExtAluValueCols { vals };
            },
        );

        // Convert the trace to a row major matrix.
        RowMajorMatrix::new(values, NUM_EXT_ALU_COLS)
    }

    fn included(&self, _record: &Self::Record) -> bool {
        true
    }
}

impl<AB> Air<AB> for ExtAluChip
where
    AB: SP1RecursionAirBuilder + PairBuilder,
{
    fn eval(&self, builder: &mut AB) {
        let main = builder.main();
        let local = main.row_slice(0);
        let local: &ExtAluCols<AB::Var> = (*local).borrow();
        let prep = builder.preprocessed();
        let prep_local = prep.row_slice(0);
        let prep_local: &ExtAluPreprocessedCols<AB::Var> = (*prep_local).borrow();

        for (
            ExtAluValueCols { vals },
            ExtAluAccessCols { addrs, is_add, is_sub, is_mul, is_div, mult },
        ) in zip(local.values, prep_local.accesses)
        {
            let in1 = vals.in1.as_extension::<AB>();
            let in2 = vals.in2.as_extension::<AB>();
            let out = vals.out.as_extension::<AB>();

            // Check exactly one flag is enabled.
            let is_real = is_add + is_sub + is_mul + is_div;
            builder.assert_bool(is_real.clone());

            builder.when(is_add).assert_ext_eq(in1.clone() + in2.clone(), out.clone());
            builder.when(is_sub).assert_ext_eq(in1.clone(), in2.clone() + out.clone());
            builder.when(is_mul).assert_ext_eq(in1.clone() * in2.clone(), out.clone());
            builder.when(is_div).assert_ext_eq(in1, in2 * out);

            // Read the inputs from memory.
            builder.receive_block(addrs.in1, vals.in1, is_real.clone());

            builder.receive_block(addrs.in2, vals.in2, is_real);

            // Write the output to memory.
            builder.send_block(addrs.out, vals.out, mult);
        }
    }
}

#[cfg(test)]
mod tests {
    use machine::tests::run_recursion_test_machines;
    use p3_baby_bear::BabyBear;
    use p3_field::{extension::BinomialExtensionField, AbstractExtensionField, AbstractField};
    use p3_matrix::dense::RowMajorMatrix;

    use rand::{rngs::StdRng, Rng, SeedableRng};
    use sp1_stark::StarkGenericConfig;
    use stark::BabyBearPoseidon2Outer;

    use super::*;

    use crate::runtime::instruction as instr;

    #[test]
    fn generate_trace() {
        type F = BabyBear;

        let shard = ExecutionRecord {
            ext_alu_events: vec![ExtAluIo {
                out: F::one().into(),
                in1: F::one().into(),
                in2: F::one().into(),
            }],
            ..Default::default()
        };
        let chip = ExtAluChip;
        let trace: RowMajorMatrix<F> = chip.generate_trace(&shard, &mut ExecutionRecord::default());
        println!("{:?}", trace.values)
    }

    #[test]
    pub fn four_ops() {
        type SC = BabyBearPoseidon2Outer;
        type F = <SC as StarkGenericConfig>::Val;

        let mut rng = StdRng::seed_from_u64(0xDEADBEEF);
        let mut random_extfelt = move || {
            let inner: [F; 4] = core::array::from_fn(|_| rng.sample(rand::distributions::Standard));
            BinomialExtensionField::<F, D>::from_base_slice(&inner)
        };
        let mut addr = 0;

        let instructions = (0..1000)
            .flat_map(|_| {
                let quot = random_extfelt();
                let in2 = random_extfelt();
                let in1 = in2 * quot;
                let alloc_size = 6;
                let a = (0..alloc_size).map(|x| x + addr).collect::<Vec<_>>();
                addr += alloc_size;
                [
                    instr::mem_ext(MemAccessKind::Write, 4, a[0], in1),
                    instr::mem_ext(MemAccessKind::Write, 4, a[1], in2),
                    instr::ext_alu(ExtAluOpcode::AddE, 1, a[2], a[0], a[1]),
                    instr::mem_ext(MemAccessKind::Read, 1, a[2], in1 + in2),
                    instr::ext_alu(ExtAluOpcode::SubE, 1, a[3], a[0], a[1]),
                    instr::mem_ext(MemAccessKind::Read, 1, a[3], in1 - in2),
                    instr::ext_alu(ExtAluOpcode::MulE, 1, a[4], a[0], a[1]),
                    instr::mem_ext(MemAccessKind::Read, 1, a[4], in1 * in2),
                    instr::ext_alu(ExtAluOpcode::DivE, 1, a[5], a[0], a[1]),
                    instr::mem_ext(MemAccessKind::Read, 1, a[5], quot),
                ]
            })
            .collect::<Vec<Instruction<F>>>();

        let program = RecursionProgram { instructions, ..Default::default() };

        run_recursion_test_machines(program);
    }
}