1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
use p3_field::{AbstractField, Field};
use sp1_recursion_core::runtime::NUM_BITS;

use super::{Array, Builder, Config, DslIr, Felt, Usize, Var};

impl<C: Config> Builder<C> {
    /// Converts a variable to LE bits.
    pub fn num2bits_v(&mut self, num: Var<C::N>) -> Array<C, Var<C::N>> {
        // This function is only used when the native field is Babybear.
        assert!(C::N::bits() == NUM_BITS);

        let output = self.dyn_array::<Var<_>>(NUM_BITS);
        self.push(DslIr::HintBitsV(output.clone(), num));

        let sum: Var<_> = self.eval(C::N::zero());
        for i in 0..NUM_BITS {
            let bit = self.get(&output, i);
            self.assert_var_eq(bit * (bit - C::N::one()), C::N::zero());
            self.assign(sum, sum + bit * C::N::from_canonical_u32(1 << i));
        }

        self.assert_var_eq(sum, num);

        self.less_than_bb_modulus(output.clone());

        output
    }

    /// Range checks a variable to a certain number of bits.
    pub fn range_check_v(&mut self, num: Var<C::N>, num_bits: usize) {
        let bits = self.num2bits_v(num);
        self.range(num_bits, bits.len()).for_each(|i, builder| {
            let bit = builder.get(&bits, i);
            builder.assert_var_eq(bit, C::N::zero());
        });
    }

    /// Converts a variable to bits inside a circuit.
    pub fn num2bits_v_circuit(&mut self, num: Var<C::N>, bits: usize) -> Vec<Var<C::N>> {
        let mut output = Vec::new();
        for _ in 0..bits {
            output.push(self.uninit());
        }

        self.push(DslIr::CircuitNum2BitsV(num, bits, output.clone()));

        output
    }

    /// Range checks a felt to a certain number of bits.
    pub fn range_check_f(&mut self, num: Felt<C::F>, num_bits: usize) {
        let bits = self.num2bits_f(num);
        self.range(num_bits, bits.len()).for_each(|i, builder| {
            let bit = builder.get(&bits, i);
            builder.assert_var_eq(bit, C::N::zero());
        });
    }

    /// Converts a felt to bits.
    pub fn num2bits_f(&mut self, num: Felt<C::F>) -> Array<C, Var<C::N>> {
        let output = self.dyn_array::<Var<_>>(NUM_BITS);
        self.push(DslIr::HintBitsF(output.clone(), num));

        let sum: Felt<_> = self.eval(C::F::zero());
        for i in 0..NUM_BITS {
            let bit = self.get(&output, i);
            self.assert_var_eq(bit * (bit - C::N::one()), C::N::zero());
            self.if_eq(bit, C::N::one()).then(|builder| {
                builder.assign(sum, sum + C::F::from_canonical_u32(1 << i));
            });
        }

        self.assert_felt_eq(sum, num);

        self.less_than_bb_modulus(output.clone());

        output
    }

    /// Converts a felt to bits inside a circuit.
    pub fn num2bits_f_circuit(&mut self, num: Felt<C::F>) -> Vec<Var<C::N>> {
        let mut output = Vec::new();
        for _ in 0..NUM_BITS {
            output.push(self.uninit());
        }

        self.push(DslIr::CircuitNum2BitsF(num, output.clone()));

        let output_array = self.vec(output.clone());
        self.less_than_bb_modulus(output_array);

        output
    }

    /// Convert bits to a variable.
    pub fn bits2num_v(&mut self, bits: &Array<C, Var<C::N>>) -> Var<C::N> {
        let num: Var<_> = self.eval(C::N::zero());
        let power: Var<_> = self.eval(C::N::one());
        self.range(0, bits.len()).for_each(|i, builder| {
            let bit = builder.get(bits, i);
            builder.assign(num, num + bit * power);
            builder.assign(power, power * C::N::from_canonical_u32(2));
        });
        num
    }

    /// Convert bits to a variable inside a circuit.
    pub fn bits2num_v_circuit(&mut self, bits: &[Var<C::N>]) -> Var<C::N> {
        let result: Var<_> = self.eval(C::N::zero());
        for i in 0..bits.len() {
            self.assign(result, result + bits[i] * C::N::from_canonical_u32(1 << i));
        }
        result
    }

    /// Convert bits to a felt.
    pub fn bits2num_f(&mut self, bits: &Array<C, Var<C::N>>) -> Felt<C::F> {
        let num: Felt<_> = self.eval(C::F::zero());
        for i in 0..NUM_BITS {
            let bit = self.get(bits, i);
            // Add `bit * 2^i` to the sum.
            self.if_eq(bit, C::N::one()).then(|builder| {
                builder.assign(num, num + C::F::from_canonical_u32(1 << i));
            });
        }
        num
    }

    /// Reverse a list of bits.
    ///
    /// SAFETY: calling this function with `bit_len` greater [`NUM_BITS`] will result in undefined
    /// behavior.
    ///
    /// Reference: [p3_util::reverse_bits_len]
    pub fn reverse_bits_len(
        &mut self,
        index_bits: &Array<C, Var<C::N>>,
        bit_len: impl Into<Usize<C::N>>,
    ) -> Array<C, Var<C::N>> {
        let bit_len = bit_len.into();

        let mut result_bits = self.dyn_array::<Var<_>>(NUM_BITS);
        self.range(0, bit_len).for_each(|i, builder| {
            let index: Var<C::N> = builder.eval(bit_len - i - C::N::one());
            let entry = builder.get(index_bits, index);
            builder.set_value(&mut result_bits, i, entry);
        });

        let zero = self.eval(C::N::zero());
        self.range(bit_len, NUM_BITS).for_each(|i, builder| {
            builder.set_value(&mut result_bits, i, zero);
        });

        result_bits
    }

    /// Reverse a list of bits inside a circuit.
    ///
    /// SAFETY: calling this function with `bit_len` greater [`NUM_BITS`] will result in undefined
    /// behavior.
    ///
    /// Reference: [p3_util::reverse_bits_len]
    pub fn reverse_bits_len_circuit(
        &mut self,
        index_bits: Vec<Var<C::N>>,
        bit_len: usize,
    ) -> Vec<Var<C::N>> {
        assert!(bit_len <= NUM_BITS);
        let mut result_bits = Vec::new();
        for i in 0..bit_len {
            let idx = bit_len - i - 1;
            result_bits.push(index_bits[idx]);
        }
        result_bits
    }

    /// Checks that the LE bit decomposition of a number is less than the babybear modulus.
    ///
    /// SAFETY: This function assumes that the num_bits values are already verified to be boolean.
    ///
    /// The babybear modulus in LE bits is: 100_000_000_000_000_000_000_000_000_111_1.
    /// To check that the num_bits array is less than that value, we first check if the most significant
    /// bits are all 1.  If it is, then we assert that the other bits are all 0.
    fn less_than_bb_modulus(&mut self, num_bits: Array<C, Var<C::N>>) {
        let one: Var<_> = self.eval(C::N::one());
        let zero: Var<_> = self.eval(C::N::zero());

        let mut most_sig_4_bits = one;
        for i in (NUM_BITS - 4)..NUM_BITS {
            let bit = self.get(&num_bits, i);
            most_sig_4_bits = self.eval(bit * most_sig_4_bits);
        }

        let mut sum_least_sig_bits = zero;
        for i in 0..(NUM_BITS - 4) {
            let bit = self.get(&num_bits, i);
            sum_least_sig_bits = self.eval(bit + sum_least_sig_bits);
        }

        // If the most significant 4 bits are all 1, then check the sum of the least significant bits, else return zero.
        let check: Var<_> =
            self.eval(most_sig_4_bits * sum_least_sig_bits + (one - most_sig_4_bits) * zero);
        self.assert_var_eq(check, zero);
    }
}