1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
use p3_field::{AbstractField, Field};
use sp1_recursion_compiler::{
    circuit::CircuitV2Builder,
    ir::{DslIr, Var},
    prelude::{Builder, Config, Ext, Felt},
};
use sp1_recursion_core_v2::{
    air::ChallengerPublicValues,
    runtime::{HASH_RATE, PERMUTATION_WIDTH},
    NUM_BITS,
};

// Constants for the Multifield challenger.
pub const SPONGE_SIZE: usize = 3;
pub const DIGEST_SIZE: usize = 1;
pub const RATE: usize = 16;

// use crate::{DigestVariable, VerifyingKeyVariable};

pub trait CanCopyChallenger<C: Config> {
    fn copy(&self, builder: &mut Builder<C>) -> Self;
}
/// Reference: [p3_challenger::CanObserve].
pub trait CanObserveVariable<C: Config, V> {
    fn observe(&mut self, builder: &mut Builder<C>, value: V);

    fn observe_slice(&mut self, builder: &mut Builder<C>, values: impl IntoIterator<Item = V>) {
        for value in values {
            self.observe(builder, value);
        }
    }
}

pub trait CanSampleVariable<C: Config, V> {
    fn sample(&mut self, builder: &mut Builder<C>) -> V;
}

/// Reference: [p3_challenger::FieldChallenger].
pub trait FieldChallengerVariable<C: Config, Bit>:
    CanObserveVariable<C, Felt<C::F>> + CanSampleVariable<C, Felt<C::F>> + CanSampleBitsVariable<C, Bit>
{
    fn sample_ext(&mut self, builder: &mut Builder<C>) -> Ext<C::F, C::EF>;

    fn check_witness(&mut self, builder: &mut Builder<C>, nb_bits: usize, witness: Felt<C::F>);

    fn duplexing(&mut self, builder: &mut Builder<C>);
}

pub trait CanSampleBitsVariable<C: Config, V> {
    fn sample_bits(&mut self, builder: &mut Builder<C>, nb_bits: usize) -> Vec<V>;
}

/// Reference: [p3_challenger::DuplexChallenger]
#[derive(Clone)]
pub struct DuplexChallengerVariable<C: Config> {
    pub sponge_state: [Felt<C::F>; PERMUTATION_WIDTH],
    pub input_buffer: Vec<Felt<C::F>>,
    pub output_buffer: Vec<Felt<C::F>>,
}

impl<C: Config> DuplexChallengerVariable<C> {
    /// Creates a new duplex challenger with the default state.
    pub fn new(builder: &mut Builder<C>) -> Self {
        DuplexChallengerVariable::<C> {
            sponge_state: core::array::from_fn(|_| builder.eval(C::F::zero())),
            input_buffer: vec![],
            output_buffer: vec![],
        }
    }

    /// Creates a new challenger with the same state as an existing challenger.
    pub fn copy(&self, builder: &mut Builder<C>) -> Self {
        let DuplexChallengerVariable { sponge_state, input_buffer, output_buffer } = self;
        let sponge_state = sponge_state.map(|x| builder.eval(x));
        let mut copy_vec = |v: &Vec<Felt<C::F>>| v.iter().map(|x| builder.eval(*x)).collect();
        DuplexChallengerVariable::<C> {
            sponge_state,
            input_buffer: copy_vec(input_buffer),
            output_buffer: copy_vec(output_buffer),
        }
    }

    // /// Asserts that the state of this challenger is equal to the state of another challenger.
    // fn assert_eq(&self, builder: &mut Builder<C>, other: &Self) {
    //     zip(&self.sponge_state, &other.sponge_state)
    //         .chain(zip(&self.input_buffer, &other.input_buffer))
    //         .chain(zip(&self.output_buffer, &other.output_buffer))
    //         .for_each(|(&element, &other_element)| {
    //             builder.assert_felt_eq(element, other_element);
    //         });
    // }

    // fn reset(&mut self, builder: &mut Builder<C>) {
    //     self.sponge_state.fill(builder.eval(C::F::zero()));
    //     self.input_buffer.clear();
    //     self.output_buffer.clear();
    // }

    fn observe(&mut self, builder: &mut Builder<C>, value: Felt<C::F>) {
        self.output_buffer.clear();

        self.input_buffer.push(value);

        if self.input_buffer.len() == HASH_RATE {
            self.duplexing(builder);
        }
    }

    // fn observe_commitment(&mut self, builder: &mut Builder<C>, commitment: DigestVariable<C>) {
    //     for element in commitment {
    //         self.observe(builder, element);
    //     }
    // }

    fn sample(&mut self, builder: &mut Builder<C>) -> Felt<C::F> {
        if !self.input_buffer.is_empty() || self.output_buffer.is_empty() {
            self.duplexing(builder);
        }

        self.output_buffer.pop().expect("output buffer should be non-empty")
    }

    fn sample_bits(&mut self, builder: &mut Builder<C>, nb_bits: usize) -> Vec<Felt<C::F>> {
        assert!(nb_bits <= NUM_BITS);
        let rand_f = self.sample(builder);
        let mut rand_f_bits = builder.num2bits_v2_f(rand_f, NUM_BITS);
        rand_f_bits.truncate(nb_bits);
        rand_f_bits
    }

    pub fn public_values(&self, builder: &mut Builder<C>) -> ChallengerPublicValues<Felt<C::F>> {
        assert!(self.input_buffer.len() <= PERMUTATION_WIDTH);
        assert!(self.output_buffer.len() <= PERMUTATION_WIDTH);

        let sponge_state = self.sponge_state;
        let num_inputs = builder.eval(C::F::from_canonical_usize(self.input_buffer.len()));
        let num_outputs = builder.eval(C::F::from_canonical_usize(self.output_buffer.len()));

        let input_buffer: [_; PERMUTATION_WIDTH] = self
            .input_buffer
            .iter()
            .copied()
            .chain((self.input_buffer.len()..PERMUTATION_WIDTH).map(|_| builder.eval(C::F::zero())))
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();

        let output_buffer: [_; PERMUTATION_WIDTH] = self
            .output_buffer
            .iter()
            .copied()
            .chain(
                (self.output_buffer.len()..PERMUTATION_WIDTH).map(|_| builder.eval(C::F::zero())),
            )
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();

        ChallengerPublicValues {
            sponge_state,
            num_inputs,
            input_buffer,
            num_outputs,
            output_buffer,
        }
    }
}

impl<C: Config> CanCopyChallenger<C> for DuplexChallengerVariable<C> {
    fn copy(&self, builder: &mut Builder<C>) -> Self {
        DuplexChallengerVariable::copy(self, builder)
    }
}

impl<C: Config> CanObserveVariable<C, Felt<C::F>> for DuplexChallengerVariable<C> {
    fn observe(&mut self, builder: &mut Builder<C>, value: Felt<C::F>) {
        DuplexChallengerVariable::observe(self, builder, value);
    }

    fn observe_slice(
        &mut self,
        builder: &mut Builder<C>,
        values: impl IntoIterator<Item = Felt<C::F>>,
    ) {
        for value in values {
            self.observe(builder, value);
        }
    }
}

impl<C: Config, const N: usize> CanObserveVariable<C, [Felt<C::F>; N]>
    for DuplexChallengerVariable<C>
{
    fn observe(&mut self, builder: &mut Builder<C>, values: [Felt<C::F>; N]) {
        for value in values {
            self.observe(builder, value);
        }
    }
}

impl<C: Config> CanSampleVariable<C, Felt<C::F>> for DuplexChallengerVariable<C> {
    fn sample(&mut self, builder: &mut Builder<C>) -> Felt<C::F> {
        DuplexChallengerVariable::sample(self, builder)
    }
}

impl<C: Config> CanSampleBitsVariable<C, Felt<C::F>> for DuplexChallengerVariable<C> {
    fn sample_bits(&mut self, builder: &mut Builder<C>, nb_bits: usize) -> Vec<Felt<C::F>> {
        DuplexChallengerVariable::sample_bits(self, builder, nb_bits)
    }
}

impl<C: Config> FieldChallengerVariable<C, Felt<C::F>> for DuplexChallengerVariable<C> {
    fn sample_ext(&mut self, builder: &mut Builder<C>) -> Ext<C::F, C::EF> {
        let a = self.sample(builder);
        let b = self.sample(builder);
        let c = self.sample(builder);
        let d = self.sample(builder);
        builder.ext_from_base_slice(&[a, b, c, d])
    }

    fn check_witness(
        &mut self,
        builder: &mut Builder<C>,
        nb_bits: usize,
        witness: Felt<<C as Config>::F>,
    ) {
        self.observe(builder, witness);
        let element_bits = self.sample_bits(builder, nb_bits);
        for bit in element_bits {
            builder.assert_felt_eq(bit, C::F::zero());
        }
    }

    fn duplexing(&mut self, builder: &mut Builder<C>) {
        assert!(self.input_buffer.len() <= HASH_RATE);

        self.sponge_state[0..self.input_buffer.len()].copy_from_slice(self.input_buffer.as_slice());
        self.input_buffer.clear();

        self.sponge_state = builder.poseidon2_permute_v2(self.sponge_state);

        self.output_buffer.clear();
        self.output_buffer.extend_from_slice(&self.sponge_state);
    }
}

#[derive(Clone)]
pub struct MultiField32ChallengerVariable<C: Config> {
    sponge_state: [Var<C::N>; 3],
    input_buffer: Vec<Felt<C::F>>,
    output_buffer: Vec<Felt<C::F>>,
    num_f_elms: usize,
}

impl<C: Config> MultiField32ChallengerVariable<C> {
    pub fn new(builder: &mut Builder<C>) -> Self {
        MultiField32ChallengerVariable::<C> {
            sponge_state: [
                builder.eval(C::N::zero()),
                builder.eval(C::N::zero()),
                builder.eval(C::N::zero()),
            ],
            input_buffer: vec![],
            output_buffer: vec![],
            num_f_elms: C::N::bits() / 64,
        }
    }

    pub fn duplexing(&mut self, builder: &mut Builder<C>) {
        assert!(self.input_buffer.len() <= self.num_f_elms * SPONGE_SIZE);

        for (i, f_chunk) in self.input_buffer.chunks(self.num_f_elms).enumerate() {
            self.sponge_state[i] = reduce_32(builder, f_chunk);
        }
        self.input_buffer.clear();

        // TODO make this a method for the builder.
        builder.push(DslIr::CircuitPoseidon2Permute(self.sponge_state));

        self.output_buffer.clear();
        for &pf_val in self.sponge_state.iter() {
            let f_vals = split_32(builder, pf_val, self.num_f_elms);
            for f_val in f_vals {
                self.output_buffer.push(f_val);
            }
        }
    }

    pub fn observe(&mut self, builder: &mut Builder<C>, value: Felt<C::F>) {
        self.output_buffer.clear();

        self.input_buffer.push(value);
        if self.input_buffer.len() == self.num_f_elms * SPONGE_SIZE {
            self.duplexing(builder);
        }
    }

    pub fn observe_commitment(
        &mut self,
        builder: &mut Builder<C>,
        value: [Var<C::N>; DIGEST_SIZE],
    ) {
        for val in value {
            let f_vals: Vec<Felt<C::F>> = split_32(builder, val, self.num_f_elms);
            for f_val in f_vals {
                self.observe(builder, f_val);
            }
        }
    }

    pub fn sample(&mut self, builder: &mut Builder<C>) -> Felt<C::F> {
        if !self.input_buffer.is_empty() || self.output_buffer.is_empty() {
            self.duplexing(builder);
        }

        self.output_buffer.pop().expect("output buffer should be non-empty")
    }

    pub fn sample_ext(&mut self, builder: &mut Builder<C>) -> Ext<C::F, C::EF> {
        let a = self.sample(builder);
        let b = self.sample(builder);
        let c = self.sample(builder);
        let d = self.sample(builder);
        builder.felts2ext(&[a, b, c, d])
    }

    pub fn sample_bits(&mut self, builder: &mut Builder<C>, bits: usize) -> Vec<Var<C::N>> {
        let rand_f = self.sample(builder);
        builder.num2bits_f_circuit(rand_f)[0..bits].to_vec()
    }

    pub fn check_witness(&mut self, builder: &mut Builder<C>, bits: usize, witness: Felt<C::F>) {
        self.observe(builder, witness);
        let element = self.sample_bits(builder, bits);
        for bit in element {
            builder.assert_var_eq(bit, C::N::from_canonical_usize(0));
        }
    }
}

impl<C: Config> CanCopyChallenger<C> for MultiField32ChallengerVariable<C> {
    /// Creates a new challenger with the same state as an existing challenger.
    fn copy(&self, builder: &mut Builder<C>) -> Self {
        let MultiField32ChallengerVariable {
            sponge_state,
            input_buffer,
            output_buffer,
            num_f_elms,
        } = self;
        let sponge_state = sponge_state.map(|x| builder.eval(x));
        let mut copy_vec = |v: &Vec<Felt<C::F>>| v.iter().map(|x| builder.eval(*x)).collect();
        MultiField32ChallengerVariable::<C> {
            sponge_state,
            num_f_elms: *num_f_elms,
            input_buffer: copy_vec(input_buffer),
            output_buffer: copy_vec(output_buffer),
        }
    }
}

impl<C: Config> CanObserveVariable<C, Felt<C::F>> for MultiField32ChallengerVariable<C> {
    fn observe(&mut self, builder: &mut Builder<C>, value: Felt<C::F>) {
        MultiField32ChallengerVariable::observe(self, builder, value);
    }
}

impl<C: Config> CanObserveVariable<C, [Var<C::N>; DIGEST_SIZE]>
    for MultiField32ChallengerVariable<C>
{
    fn observe(&mut self, builder: &mut Builder<C>, value: [Var<C::N>; DIGEST_SIZE]) {
        self.observe_commitment(builder, value)
    }
}

impl<C: Config> CanObserveVariable<C, Var<C::N>> for MultiField32ChallengerVariable<C> {
    fn observe(&mut self, builder: &mut Builder<C>, value: Var<C::N>) {
        self.observe_commitment(builder, [value])
    }
}

impl<C: Config> CanSampleVariable<C, Felt<C::F>> for MultiField32ChallengerVariable<C> {
    fn sample(&mut self, builder: &mut Builder<C>) -> Felt<C::F> {
        MultiField32ChallengerVariable::sample(self, builder)
    }
}

impl<C: Config> CanSampleBitsVariable<C, Var<C::N>> for MultiField32ChallengerVariable<C> {
    fn sample_bits(&mut self, builder: &mut Builder<C>, bits: usize) -> Vec<Var<C::N>> {
        MultiField32ChallengerVariable::sample_bits(self, builder, bits)
    }
}

impl<C: Config> FieldChallengerVariable<C, Var<C::N>> for MultiField32ChallengerVariable<C> {
    fn sample_ext(&mut self, builder: &mut Builder<C>) -> Ext<C::F, C::EF> {
        MultiField32ChallengerVariable::sample_ext(self, builder)
    }

    fn check_witness(&mut self, builder: &mut Builder<C>, bits: usize, witness: Felt<C::F>) {
        MultiField32ChallengerVariable::check_witness(self, builder, bits, witness);
    }

    fn duplexing(&mut self, builder: &mut Builder<C>) {
        MultiField32ChallengerVariable::duplexing(self, builder);
    }
}

pub fn reduce_32<C: Config>(builder: &mut Builder<C>, vals: &[Felt<C::F>]) -> Var<C::N> {
    let mut power = C::N::one();
    let result: Var<C::N> = builder.eval(C::N::zero());
    for val in vals.iter() {
        let val = builder.felt2var_circuit(*val);
        builder.assign(result, result + val * power);
        power *= C::N::from_canonical_u64(1u64 << 32);
    }
    result
}

pub fn split_32<C: Config>(builder: &mut Builder<C>, val: Var<C::N>, n: usize) -> Vec<Felt<C::F>> {
    let bits = builder.num2bits_v_circuit(val, 256);
    let mut results = Vec::new();
    for i in 0..n {
        let result: Felt<C::F> = builder.eval(C::F::zero());
        for j in 0..64 {
            let bit = bits[i * 64 + j];
            let t = builder.eval(result + C::F::from_wrapped_u64(1 << j));
            let z = builder.select_f(bit, t, result);
            builder.assign(result, z);
        }
        results.push(result);
    }
    results
}

#[cfg(test)]
pub(crate) mod tests {
    use std::iter::zip;

    use crate::{
        challenger::{CanCopyChallenger, MultiField32ChallengerVariable},
        hash::{FieldHasherVariable, BN254_DIGEST_SIZE},
        utils::tests::run_test_recursion,
    };
    use p3_baby_bear::BabyBear;
    use p3_bn254_fr::Bn254Fr;
    use p3_challenger::{CanObserve, CanSample, CanSampleBits, FieldChallenger};
    use p3_field::AbstractField;
    use p3_symmetric::{CryptographicHasher, Hash, PseudoCompressionFunction};
    use sp1_recursion_compiler::{
        asm::{AsmBuilder, AsmConfig},
        config::OuterConfig,
        constraints::ConstraintCompiler,
        ir::{Builder, Config, Ext, ExtConst, Felt, Var},
    };
    use sp1_recursion_core_v2::stark::config::{
        outer_perm, BabyBearPoseidon2Outer, OuterCompress, OuterHash,
    };
    use sp1_recursion_gnark_ffi::PlonkBn254Prover;
    use sp1_stark::{baby_bear_poseidon2::BabyBearPoseidon2, StarkGenericConfig};

    use crate::{
        challenger::{DuplexChallengerVariable, FieldChallengerVariable},
        witness::OuterWitness,
    };

    type SC = BabyBearPoseidon2;
    type C = OuterConfig;
    type F = <SC as StarkGenericConfig>::Val;
    type EF = <SC as StarkGenericConfig>::Challenge;

    #[test]
    fn test_compiler_challenger() {
        let config = SC::default();
        let mut challenger = config.challenger();
        challenger.observe(F::one());
        challenger.observe(F::two());
        challenger.observe(F::two());
        challenger.observe(F::two());
        let result: F = challenger.sample();
        println!("expected result: {}", result);
        let result_ef: EF = challenger.sample_ext_element();
        println!("expected result_ef: {}", result_ef);

        let mut builder = AsmBuilder::<F, EF>::default();

        let mut challenger = DuplexChallengerVariable::<AsmConfig<F, EF>> {
            sponge_state: core::array::from_fn(|_| builder.eval(F::zero())),
            input_buffer: vec![],
            output_buffer: vec![],
        };
        let one: Felt<_> = builder.eval(F::one());
        let two: Felt<_> = builder.eval(F::two());

        challenger.observe(&mut builder, one);
        challenger.observe(&mut builder, two);
        challenger.observe(&mut builder, two);
        challenger.observe(&mut builder, two);
        let element = challenger.sample(&mut builder);
        let element_ef = challenger.sample_ext(&mut builder);

        let expected_result: Felt<_> = builder.eval(result);
        let expected_result_ef: Ext<_, _> = builder.eval(result_ef.cons());
        builder.print_f(element);
        builder.assert_felt_eq(expected_result, element);
        builder.print_e(element_ef);
        builder.assert_ext_eq(expected_result_ef, element_ef);

        run_test_recursion(builder.operations, None);
    }

    #[test]
    fn test_challenger_outer() {
        type SC = BabyBearPoseidon2Outer;
        type F = <SC as StarkGenericConfig>::Val;
        type EF = <SC as StarkGenericConfig>::Challenge;
        type N = <C as Config>::N;

        let config = SC::default();
        let mut challenger = config.challenger();
        challenger.observe(F::one());
        challenger.observe(F::two());
        challenger.observe(F::two());
        challenger.observe(F::two());
        let commit = Hash::from([N::two()]);
        challenger.observe(commit);
        let result: F = challenger.sample();
        println!("expected result: {}", result);
        let result_ef: EF = challenger.sample_ext_element();
        println!("expected result_ef: {}", result_ef);
        let mut bits = challenger.sample_bits(30);
        let mut bits_vec = vec![];
        for _ in 0..30 {
            bits_vec.push(bits % 2);
            bits >>= 1;
        }
        println!("expected bits: {:?}", bits_vec);

        let mut builder = Builder::<C>::default();

        // let width: Var<_> = builder.eval(F::from_canonical_usize(PERMUTATION_WIDTH));
        let mut challenger = MultiField32ChallengerVariable::<C>::new(&mut builder);
        let one: Felt<_> = builder.eval(F::one());
        let two: Felt<_> = builder.eval(F::two());
        let two_var: Var<_> = builder.eval(N::two());
        // builder.halt();
        challenger.observe(&mut builder, one);
        challenger.observe(&mut builder, two);
        challenger.observe(&mut builder, two);
        challenger.observe(&mut builder, two);
        challenger.observe_commitment(&mut builder, [two_var]);

        // Check to make sure the copying works.
        challenger = challenger.copy(&mut builder);
        let element = challenger.sample(&mut builder);
        let element_ef = challenger.sample_ext(&mut builder);
        let bits = challenger.sample_bits(&mut builder, 31);

        let expected_result: Felt<_> = builder.eval(result);
        let expected_result_ef: Ext<_, _> = builder.eval(result_ef.cons());
        builder.print_f(element);
        builder.assert_felt_eq(expected_result, element);
        builder.print_e(element_ef);
        builder.assert_ext_eq(expected_result_ef, element_ef);
        for (expected_bit, bit) in zip(bits_vec.iter(), bits.iter()) {
            let expected_bit: Var<_> = builder.eval(N::from_canonical_usize(*expected_bit));
            builder.print_v(*bit);
            builder.assert_var_eq(expected_bit, *bit);
        }

        let mut backend = ConstraintCompiler::<C>::default();
        let constraints = backend.emit(builder.operations);
        let witness = OuterWitness::default();
        PlonkBn254Prover::test::<C>(constraints, witness);
    }

    #[test]
    fn test_select_chain_digest() {
        type N = <C as Config>::N;

        let mut builder = Builder::<C>::default();

        let one: Var<_> = builder.eval(N::one());
        let two: Var<_> = builder.eval(N::two());

        let to_swap = [[one], [two]];
        let result = BabyBearPoseidon2Outer::select_chain_digest(&mut builder, one, to_swap);

        builder.assert_var_eq(result[0][0], two);
        builder.assert_var_eq(result[1][0], one);

        let mut backend = ConstraintCompiler::<C>::default();
        let constraints = backend.emit(builder.operations);
        let witness = OuterWitness::default();
        PlonkBn254Prover::test::<C>(constraints, witness);
    }

    #[test]
    fn test_p2_hash() {
        let perm = outer_perm();
        let hasher = OuterHash::new(perm.clone()).unwrap();

        let input: [BabyBear; 7] = [
            BabyBear::from_canonical_u32(0),
            BabyBear::from_canonical_u32(1),
            BabyBear::from_canonical_u32(2),
            BabyBear::from_canonical_u32(2),
            BabyBear::from_canonical_u32(2),
            BabyBear::from_canonical_u32(2),
            BabyBear::from_canonical_u32(2),
        ];
        let output = hasher.hash_iter(input);

        let mut builder = Builder::<C>::default();
        let a: Felt<_> = builder.eval(input[0]);
        let b: Felt<_> = builder.eval(input[1]);
        let c: Felt<_> = builder.eval(input[2]);
        let d: Felt<_> = builder.eval(input[3]);
        let e: Felt<_> = builder.eval(input[4]);
        let f: Felt<_> = builder.eval(input[5]);
        let g: Felt<_> = builder.eval(input[6]);
        let result = BabyBearPoseidon2Outer::hash(&mut builder, &[a, b, c, d, e, f, g]);

        builder.assert_var_eq(result[0], output[0]);

        let mut backend = ConstraintCompiler::<C>::default();
        let constraints = backend.emit(builder.operations);
        PlonkBn254Prover::test::<C>(constraints.clone(), OuterWitness::default());
    }

    #[test]
    fn test_p2_compress() {
        type OuterDigestVariable = [Var<<C as Config>::N>; BN254_DIGEST_SIZE];
        let perm = outer_perm();
        let compressor = OuterCompress::new(perm.clone());

        let a: [Bn254Fr; 1] = [Bn254Fr::two()];
        let b: [Bn254Fr; 1] = [Bn254Fr::two()];
        let gt = compressor.compress([a, b]);

        let mut builder = Builder::<C>::default();
        let a: OuterDigestVariable = [builder.eval(a[0])];
        let b: OuterDigestVariable = [builder.eval(b[0])];
        let result = BabyBearPoseidon2Outer::compress(&mut builder, [a, b]);
        builder.assert_var_eq(result[0], gt[0]);

        let mut backend = ConstraintCompiler::<C>::default();
        let constraints = backend.emit(builder.operations);
        PlonkBn254Prover::test::<C>(constraints.clone(), OuterWitness::default());
    }
}