1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
//! Division and remainder verification.
//!
//! This module implements the verification logic for division and remainder operations. It ensures
//! that for any given inputs b and c and outputs quotient and remainder, the equation
//!
//! b = c * quotient + remainder
//!
//! holds true, while also ensuring that the signs of `b` and `remainder` match.
//!
//! A critical aspect of this implementation is the use of 64-bit arithmetic for result calculation.
//! This choice is driven by the need to make the solution unique: in 32-bit arithmetic,
//! `c * quotient + remainder` could overflow, leading to results that are congruent modulo 2^{32}
//! and thus not uniquely defined. The 64-bit approach avoids this overflow, ensuring that each
//! valid input combination maps to a unique result.
//!
//! Implementation:
//!
//! # Use the multiplication ALU table. result is 64 bits.
//! result = quotient * c.
//!
//! # Add sign-extended remainder to result. Propagate carry to handle overflow within bytes.
//! base = pow(2, 8)
//! carry = 0
//! for i in range(8):
//! x = result[i] + remainder[i] + carry
//! result[i] = x % base
//! carry = x // base
//!
//! # The number represented by c * quotient + remainder in 64 bits must equal b in 32 bits.
//!
//! # Assert the lower 32 bits of result match b.
//! assert result[0..4] == b[0..4]
//!
//! # Assert the upper 32 bits of result match the sign of b.
//! if (b == -2^{31}) and (c == -1):
//! # This is the only exception as this is the only case where it overflows.
//! assert result[4..8] == [0, 0, 0, 0]
//! elif b < 0:
//! assert result[4..8] == [0xff, 0xff, 0xff, 0xff]
//! else:
//! assert result[4..8] == [0, 0, 0, 0]
//!
//! # Check a = quotient or remainder.
//! assert a == (quotient if opcode == division else remainder)
//!
//! # remainder and b must have the same sign.
//! if remainder < 0:
//! assert b <= 0
//! if remainder > 0:
//! assert b >= 0
//!
//! # abs(remainder) < abs(c)
//! if c < 0:
//! assert c < remainder <= 0
//! elif c > 0:
//! assert 0 <= remainder < c
//!
//! if is_c_0:
//! # if division by 0, then quotient = 0xffffffff per RISC-V spec. This needs special care since
//! # b = 0 * quotient + b is satisfied by any quotient.
//! assert quotient = 0xffffffff
mod utils;
use core::borrow::{Borrow, BorrowMut};
use core::mem::size_of;
use hashbrown::HashMap;
use p3_air::{Air, AirBuilder, BaseAir};
use p3_field::AbstractField;
use p3_field::PrimeField;
use p3_matrix::dense::RowMajorMatrix;
use p3_matrix::Matrix;
use sp1_derive::AlignedBorrow;
use crate::air::MachineAir;
use crate::air::{SP1AirBuilder, Word};
use crate::alu::divrem::utils::{get_msb, get_quotient_and_remainder, is_signed_operation};
use crate::alu::{create_alu_lookups, AluEvent};
use crate::bytes::event::ByteRecord;
use crate::bytes::{ByteLookupEvent, ByteOpcode};
use crate::disassembler::WORD_SIZE;
use crate::operations::{IsEqualWordOperation, IsZeroWordOperation};
use crate::runtime::{ExecutionRecord, Opcode, Program};
use crate::utils::pad_to_power_of_two;
/// The number of main trace columns for `DivRemChip`.
pub const NUM_DIVREM_COLS: usize = size_of::<DivRemCols<u8>>();
/// The size of a byte in bits.
const BYTE_SIZE: usize = 8;
/// The size of a 64-bit in bytes.
const LONG_WORD_SIZE: usize = 2 * WORD_SIZE;
/// A chip that implements addition for the opcodes DIV/REM.
#[derive(Default)]
pub struct DivRemChip;
/// The column layout for the chip.
#[derive(AlignedBorrow, Default, Debug, Clone, Copy)]
#[repr(C)]
pub struct DivRemCols<T> {
/// The shard number, used for byte lookup table.
pub shard: T,
/// The channel number, used for byte lookup table.
pub channel: T,
/// The nonce of the operation.
pub nonce: T,
/// The output operand.
pub a: Word<T>,
/// The first input operand.
pub b: Word<T>,
/// The second input operand.
pub c: Word<T>,
/// Results of dividing `b` by `c`.
pub quotient: Word<T>,
/// Remainder when dividing `b` by `c`.
pub remainder: Word<T>,
/// `abs(remainder)`, used to check `abs(remainder) < abs(c)`.
pub abs_remainder: Word<T>,
/// `abs(c)`, used to check `abs(remainder) < abs(c)`.
pub abs_c: Word<T>,
/// `max(abs(c), 1)`, used to check `abs(remainder) < abs(c)`.
pub max_abs_c_or_1: Word<T>,
/// The result of `c * quotient`.
pub c_times_quotient: [T; LONG_WORD_SIZE],
/// Carry propagated when adding `remainder` by `c * quotient`.
pub carry: [T; LONG_WORD_SIZE],
/// Flag to indicate division by 0.
pub is_c_0: IsZeroWordOperation<T>,
/// Flag to indicate whether the opcode is DIV.
pub is_div: T,
/// Flag to indicate whether the opcode is DIVU.
pub is_divu: T,
/// Flag to indicate whether the opcode is REM.
pub is_rem: T,
/// Flag to indicate whether the opcode is REMU.
pub is_remu: T,
/// Flag to indicate whether the division operation overflows.
///
/// Overflow occurs in a specific case of signed 32-bit integer division: when `b` is the
/// minimum representable value (`-2^31`, the smallest negative number) and `c` is `-1`. In this
/// case, the division result exceeds the maximum positive value representable by a 32-bit
/// signed integer.
pub is_overflow: T,
/// Flag for whether the value of `b` matches the unique overflow case `b = -2^31` and `c = -1`.
pub is_overflow_b: IsEqualWordOperation<T>,
/// Flag for whether the value of `c` matches the unique overflow case `b = -2^31` and `c = -1`.
pub is_overflow_c: IsEqualWordOperation<T>,
/// The most significant bit of `b`.
pub b_msb: T,
/// The most significant bit of remainder.
pub rem_msb: T,
/// The most significant bit of `c`.
pub c_msb: T,
/// Flag to indicate whether `b` is negative.
pub b_neg: T,
/// Flag to indicate whether `rem_neg` is negative.
pub rem_neg: T,
/// Flag to indicate whether `c` is negative.
pub c_neg: T,
/// The lower nonce of the operation.
pub lower_nonce: T,
/// The upper nonce of the operation.
pub upper_nonce: T,
/// The absolute nonce of the operation.
pub abs_nonce: T,
/// Selector to determine whether an ALU Event is sent for absolute value computation of `c`.
pub abs_c_alu_event: T,
pub abs_c_alu_event_nonce: T,
/// Selector to determine whether an ALU Event is sent for absolute value computation of `rem`.
pub abs_rem_alu_event: T,
pub abs_rem_alu_event_nonce: T,
/// Selector to know whether this row is enabled.
pub is_real: T,
/// Column to modify multiplicity for remainder range check event.
pub remainder_check_multiplicity: T,
}
impl<F: PrimeField> MachineAir<F> for DivRemChip {
type Record = ExecutionRecord;
type Program = Program;
fn name(&self) -> String {
"DivRem".to_string()
}
fn generate_trace(
&self,
input: &ExecutionRecord,
output: &mut ExecutionRecord,
) -> RowMajorMatrix<F> {
// Generate the trace rows for each event.
let mut rows: Vec<[F; NUM_DIVREM_COLS]> = vec![];
let divrem_events = input.divrem_events.clone();
for event in divrem_events.iter() {
assert!(
event.opcode == Opcode::DIVU
|| event.opcode == Opcode::REMU
|| event.opcode == Opcode::REM
|| event.opcode == Opcode::DIV
);
let mut row = [F::zero(); NUM_DIVREM_COLS];
let cols: &mut DivRemCols<F> = row.as_mut_slice().borrow_mut();
// Initialize cols with basic operands and flags derived from the current event.
{
cols.a = Word::from(event.a);
cols.b = Word::from(event.b);
cols.c = Word::from(event.c);
cols.shard = F::from_canonical_u32(event.shard);
cols.channel = F::from_canonical_u8(event.channel);
cols.is_real = F::one();
cols.is_divu = F::from_bool(event.opcode == Opcode::DIVU);
cols.is_remu = F::from_bool(event.opcode == Opcode::REMU);
cols.is_div = F::from_bool(event.opcode == Opcode::DIV);
cols.is_rem = F::from_bool(event.opcode == Opcode::REM);
cols.is_c_0.populate(event.c);
}
let (quotient, remainder) = get_quotient_and_remainder(event.b, event.c, event.opcode);
cols.quotient = Word::from(quotient);
cols.remainder = Word::from(remainder);
// Calculate flags for sign detection.
{
cols.rem_msb = F::from_canonical_u8(get_msb(remainder));
cols.b_msb = F::from_canonical_u8(get_msb(event.b));
cols.c_msb = F::from_canonical_u8(get_msb(event.c));
cols.is_overflow_b.populate(event.b, i32::MIN as u32);
cols.is_overflow_c.populate(event.c, -1i32 as u32);
if is_signed_operation(event.opcode) {
cols.rem_neg = cols.rem_msb;
cols.b_neg = cols.b_msb;
cols.c_neg = cols.c_msb;
cols.is_overflow =
F::from_bool(event.b as i32 == i32::MIN && event.c as i32 == -1);
cols.abs_remainder = Word::from((remainder as i32).abs() as u32);
cols.abs_c = Word::from((event.c as i32).abs() as u32);
cols.max_abs_c_or_1 = Word::from(u32::max(1, (event.c as i32).abs() as u32));
} else {
cols.abs_remainder = cols.remainder;
cols.abs_c = cols.c;
cols.max_abs_c_or_1 = Word::from(u32::max(1, event.c));
}
// Set the `alu_event` flags.
cols.abs_c_alu_event = cols.c_neg * cols.is_real;
cols.abs_c_alu_event_nonce = F::from_canonical_u32(
input
.nonce_lookup
.get(&event.sub_lookups[4])
.copied()
.unwrap_or_default(),
);
cols.abs_rem_alu_event = cols.rem_neg * cols.is_real;
cols.abs_rem_alu_event_nonce = F::from_canonical_u32(
input
.nonce_lookup
.get(&event.sub_lookups[5])
.copied()
.unwrap_or_default(),
);
// Insert the MSB lookup events.
{
let words = [event.b, event.c, remainder];
let mut blu_events: Vec<ByteLookupEvent> = vec![];
for word in words.iter() {
let most_significant_byte = word.to_le_bytes()[WORD_SIZE - 1];
blu_events.push(ByteLookupEvent {
shard: event.shard,
channel: event.channel,
opcode: ByteOpcode::MSB,
a1: get_msb(*word) as u16,
a2: 0,
b: most_significant_byte,
c: 0,
});
}
output.add_byte_lookup_events(blu_events);
}
}
// Calculate the modified multiplicity
{
cols.remainder_check_multiplicity = cols.is_real * (F::one() - cols.is_c_0.result);
}
// Calculate c * quotient + remainder.
{
let c_times_quotient = {
if is_signed_operation(event.opcode) {
(((quotient as i32) as i64) * ((event.c as i32) as i64)).to_le_bytes()
} else {
((quotient as u64) * (event.c as u64)).to_le_bytes()
}
};
cols.c_times_quotient = c_times_quotient.map(F::from_canonical_u8);
let remainder_bytes = {
if is_signed_operation(event.opcode) {
((remainder as i32) as i64).to_le_bytes()
} else {
(remainder as u64).to_le_bytes()
}
};
// Add remainder to product.
let mut carry = [0u32; 8];
let base = 1 << BYTE_SIZE;
for i in 0..LONG_WORD_SIZE {
let mut x = c_times_quotient[i] as u32 + remainder_bytes[i] as u32;
if i > 0 {
x += carry[i - 1];
}
carry[i] = x / base;
cols.carry[i] = F::from_canonical_u32(carry[i]);
}
// Insert the necessary multiplication & LT events.
//
// This generate_trace for div must be executed _before_ calling generate_trace for
// mul and LT upon which div depends. This ordering is critical as mul and LT
// require all the mul and LT events be added before we can call generate_trace.
{
// Insert the absolute value computation events.
{
let mut add_events: Vec<AluEvent> = vec![];
if cols.abs_c_alu_event == F::one() {
add_events.push(AluEvent {
lookup_id: event.sub_lookups[4],
shard: event.shard,
channel: event.channel,
clk: event.clk,
opcode: Opcode::ADD,
a: 0,
b: event.c,
c: (event.c as i32).abs() as u32,
sub_lookups: create_alu_lookups(),
})
}
if cols.abs_rem_alu_event == F::one() {
add_events.push(AluEvent {
lookup_id: event.sub_lookups[5],
shard: event.shard,
channel: event.channel,
clk: event.clk,
opcode: Opcode::ADD,
a: 0,
b: remainder,
c: (remainder as i32).abs() as u32,
sub_lookups: create_alu_lookups(),
})
}
let mut alu_events = HashMap::new();
alu_events.insert(Opcode::ADD, add_events);
output.add_alu_events(alu_events);
}
let mut lower_word = 0;
for i in 0..WORD_SIZE {
lower_word += (c_times_quotient[i] as u32) << (i * BYTE_SIZE);
}
let mut upper_word = 0;
for i in 0..WORD_SIZE {
upper_word += (c_times_quotient[WORD_SIZE + i] as u32) << (i * BYTE_SIZE);
}
let lower_multiplication = AluEvent {
lookup_id: event.sub_lookups[0],
shard: event.shard,
channel: event.channel,
clk: event.clk,
opcode: Opcode::MUL,
a: lower_word,
c: event.c,
b: quotient,
sub_lookups: create_alu_lookups(),
};
cols.lower_nonce = F::from_canonical_u32(
input
.nonce_lookup
.get(&event.sub_lookups[0])
.copied()
.unwrap_or_default(),
);
output.add_mul_event(lower_multiplication);
let upper_multiplication = AluEvent {
lookup_id: event.sub_lookups[1],
shard: event.shard,
channel: event.channel,
clk: event.clk,
opcode: {
if is_signed_operation(event.opcode) {
Opcode::MULH
} else {
Opcode::MULHU
}
},
a: upper_word,
c: event.c,
b: quotient,
sub_lookups: create_alu_lookups(),
};
cols.upper_nonce = F::from_canonical_u32(
input
.nonce_lookup
.get(&event.sub_lookups[1])
.copied()
.unwrap_or_default(),
);
output.add_mul_event(upper_multiplication);
let lt_event = if is_signed_operation(event.opcode) {
cols.abs_nonce = F::from_canonical_u32(
input
.nonce_lookup
.get(&event.sub_lookups[2])
.copied()
.unwrap_or_default(),
);
AluEvent {
lookup_id: event.sub_lookups[2],
shard: event.shard,
channel: event.channel,
opcode: Opcode::SLTU,
a: 1,
b: (remainder as i32).abs() as u32,
c: u32::max(1, (event.c as i32).abs() as u32),
clk: event.clk,
sub_lookups: create_alu_lookups(),
}
} else {
cols.abs_nonce = F::from_canonical_u32(
input
.nonce_lookup
.get(&event.sub_lookups[3])
.copied()
.unwrap_or_default(),
);
AluEvent {
lookup_id: event.sub_lookups[3],
shard: event.shard,
channel: event.channel,
opcode: Opcode::SLTU,
a: 1,
b: remainder,
c: u32::max(1, event.c),
clk: event.clk,
sub_lookups: create_alu_lookups(),
}
};
if cols.remainder_check_multiplicity == F::one() {
output.add_lt_event(lt_event);
}
}
// Range check.
{
output.add_u8_range_checks(event.shard, event.channel, "ient.to_le_bytes());
output.add_u8_range_checks(
event.shard,
event.channel,
&remainder.to_le_bytes(),
);
output.add_u8_range_checks(event.shard, event.channel, &c_times_quotient);
}
}
rows.push(row);
}
// Convert the trace to a row major matrix.
let mut trace = RowMajorMatrix::new(
rows.into_iter().flatten().collect::<Vec<_>>(),
NUM_DIVREM_COLS,
);
// Pad the trace to a power of two.
pad_to_power_of_two::<NUM_DIVREM_COLS, F>(&mut trace.values);
// Create the template for the padded rows. These are fake rows that don't fail on some
// sanity checks.
let padded_row_template = {
let mut row = [F::zero(); NUM_DIVREM_COLS];
let cols: &mut DivRemCols<F> = row.as_mut_slice().borrow_mut();
// 0 divided by 1. quotient = remainder = 0.
cols.is_divu = F::one();
cols.c[0] = F::one();
cols.abs_c[0] = F::one();
cols.max_abs_c_or_1[0] = F::one();
cols.is_c_0.populate(1);
row
};
debug_assert!(padded_row_template.len() == NUM_DIVREM_COLS);
for i in input.divrem_events.len() * NUM_DIVREM_COLS..trace.values.len() {
trace.values[i] = padded_row_template[i % NUM_DIVREM_COLS];
}
// Write the nonces to the trace.
for i in 0..trace.height() {
let cols: &mut DivRemCols<F> =
trace.values[i * NUM_DIVREM_COLS..(i + 1) * NUM_DIVREM_COLS].borrow_mut();
cols.nonce = F::from_canonical_usize(i);
}
trace
}
fn included(&self, shard: &Self::Record) -> bool {
!shard.divrem_events.is_empty()
}
}
impl<F> BaseAir<F> for DivRemChip {
fn width(&self) -> usize {
NUM_DIVREM_COLS
}
}
impl<AB> Air<AB> for DivRemChip
where
AB: SP1AirBuilder,
{
fn eval(&self, builder: &mut AB) {
let main = builder.main();
let local = main.row_slice(0);
let local: &DivRemCols<AB::Var> = (*local).borrow();
let next = main.row_slice(1);
let next: &DivRemCols<AB::Var> = (*next).borrow();
let base = AB::F::from_canonical_u32(1 << 8);
let one: AB::Expr = AB::F::one().into();
let zero: AB::Expr = AB::F::zero().into();
// Constrain the incrementing nonce.
builder.when_first_row().assert_zero(local.nonce);
builder
.when_transition()
.assert_eq(local.nonce + AB::Expr::one(), next.nonce);
// Calculate whether b, remainder, and c are negative.
{
// Negative if and only if op code is signed & MSB = 1.
let is_signed_type = local.is_div + local.is_rem;
let msb_sign_pairs = [
(local.b_msb, local.b_neg),
(local.rem_msb, local.rem_neg),
(local.c_msb, local.c_neg),
];
for msb_sign_pair in msb_sign_pairs.iter() {
let msb = msb_sign_pair.0;
let is_negative = msb_sign_pair.1;
builder.assert_eq(msb * is_signed_type.clone(), is_negative);
}
}
// Use the mul table to compute c * quotient and compare it to local.c_times_quotient.
{
let lower_half: [AB::Expr; 4] = [
local.c_times_quotient[0].into(),
local.c_times_quotient[1].into(),
local.c_times_quotient[2].into(),
local.c_times_quotient[3].into(),
];
// The lower 4 bytes of c_times_quotient must match the lower 4 bytes of (c * quotient).
builder.send_alu(
AB::Expr::from_canonical_u32(Opcode::MUL as u32),
Word(lower_half),
local.quotient,
local.c,
local.shard,
local.channel,
local.lower_nonce,
local.is_real,
);
let opcode_for_upper_half = {
let mulh = AB::Expr::from_canonical_u32(Opcode::MULH as u32);
let mulhu = AB::Expr::from_canonical_u32(Opcode::MULHU as u32);
let is_signed = local.is_div + local.is_rem;
let is_unsigned = local.is_divu + local.is_remu;
is_signed * mulh + is_unsigned * mulhu
};
let upper_half: [AB::Expr; 4] = [
local.c_times_quotient[4].into(),
local.c_times_quotient[5].into(),
local.c_times_quotient[6].into(),
local.c_times_quotient[7].into(),
];
builder.send_alu(
opcode_for_upper_half,
Word(upper_half),
local.quotient,
local.c,
local.shard,
local.channel,
local.upper_nonce,
local.is_real,
);
}
// Calculate is_overflow. is_overflow = is_equal(b, -2^{31}) * is_equal(c, -1) * is_signed
{
IsEqualWordOperation::<AB::F>::eval(
builder,
local.b.map(|x| x.into()),
Word::from(i32::MIN as u32).map(|x: AB::F| x.into()),
local.is_overflow_b,
local.is_real.into(),
);
IsEqualWordOperation::<AB::F>::eval(
builder,
local.c.map(|x| x.into()),
Word::from(-1i32 as u32).map(|x: AB::F| x.into()),
local.is_overflow_c,
local.is_real.into(),
);
let is_signed = local.is_div + local.is_rem;
builder.assert_eq(
local.is_overflow,
local.is_overflow_b.is_diff_zero.result
* local.is_overflow_c.is_diff_zero.result
* is_signed,
);
}
// Add remainder to product c * quotient, and compare it to b.
{
let sign_extension = local.rem_neg * AB::F::from_canonical_u8(u8::MAX);
let mut c_times_quotient_plus_remainder: Vec<AB::Expr> =
vec![AB::F::zero().into(); LONG_WORD_SIZE];
// Add remainder to c_times_quotient and propagate carry.
for i in 0..LONG_WORD_SIZE {
c_times_quotient_plus_remainder[i] = local.c_times_quotient[i].into();
// Add remainder.
if i < WORD_SIZE {
c_times_quotient_plus_remainder[i] += local.remainder[i].into();
} else {
// If rem is negative, add 0xff to the upper 4 bytes.
c_times_quotient_plus_remainder[i] += sign_extension.clone();
}
// Propagate carry.
c_times_quotient_plus_remainder[i] -= local.carry[i] * base;
if i > 0 {
c_times_quotient_plus_remainder[i] += local.carry[i - 1].into();
}
}
// Compare c_times_quotient_plus_remainder to b by checking each limb.
for i in 0..LONG_WORD_SIZE {
if i < WORD_SIZE {
// The lower 4 bytes of the result must match the corresponding bytes in b.
builder.assert_eq(local.b[i], c_times_quotient_plus_remainder[i].clone());
} else {
// The upper 4 bytes must reflect the sign of b in two's complement:
// - All 1s (0xff) for negative b.
// - All 0s for non-negative b.
let not_overflow = one.clone() - local.is_overflow;
builder
.when(not_overflow.clone())
.when(local.b_neg)
.assert_eq(
c_times_quotient_plus_remainder[i].clone(),
AB::F::from_canonical_u8(u8::MAX),
);
builder
.when(not_overflow.clone())
.when_ne(one.clone(), local.b_neg)
.assert_zero(c_times_quotient_plus_remainder[i].clone());
// The only exception to the upper-4-byte check is the overflow case.
builder
.when(local.is_overflow)
.assert_zero(c_times_quotient_plus_remainder[i].clone());
}
}
}
// a must equal remainder or quotient depending on the opcode.
for i in 0..WORD_SIZE {
builder
.when(local.is_divu + local.is_div)
.assert_eq(local.quotient[i], local.a[i]);
builder
.when(local.is_remu + local.is_rem)
.assert_eq(local.remainder[i], local.a[i]);
}
// remainder and b must have the same sign. Due to the intricate nature of sign logic in ZK,
// we will check a slightly stronger condition:
//
// 1. If remainder < 0, then b < 0.
// 2. If remainder > 0, then b >= 0.
{
// A number is 0 if and only if the sum of the 4 limbs equals to 0.
let mut rem_byte_sum = zero.clone();
let mut b_byte_sum = zero.clone();
for i in 0..WORD_SIZE {
rem_byte_sum += local.remainder[i].into();
b_byte_sum += local.b[i].into();
}
// 1. If remainder < 0, then b < 0.
builder
.when(local.rem_neg) // rem is negative.
.assert_one(local.b_neg); // b is negative.
// 2. If remainder > 0, then b >= 0.
builder
.when(rem_byte_sum.clone()) // remainder is nonzero.
.when(one.clone() - local.rem_neg) // rem is not negative.
.assert_zero(local.b_neg); // b is not negative.
}
// When division by 0, quotient must be 0xffffffff per RISC-V spec.
{
// Calculate whether c is 0.
IsZeroWordOperation::<AB::F>::eval(
builder,
local.c.map(|x| x.into()),
local.is_c_0,
local.is_real.into(),
);
// If is_c_0 is true, then quotient must be 0xffffffff = u32::MAX.
for i in 0..WORD_SIZE {
builder
.when(local.is_c_0.result)
.when(local.is_divu + local.is_div)
.assert_eq(local.quotient[i], AB::F::from_canonical_u8(u8::MAX));
}
}
// Range check remainder. (i.e., |remainder| < |c| when not is_c_0)
{
// For each of `c` and `rem`, assert that the absolute value is equal to the original value,
// if the original value is non-negative or the minimum i32.
for i in 0..WORD_SIZE {
builder
.when_not(local.c_neg)
.assert_eq(local.c[i], local.abs_c[i]);
builder
.when_not(local.rem_neg)
.assert_eq(local.remainder[i], local.abs_remainder[i]);
}
// In the case that `c` or `rem` is negative, instead check that their sum is zero by
// sending an AddEvent.
builder.send_alu(
AB::Expr::from_canonical_u32(Opcode::ADD as u32),
Word([zero.clone(), zero.clone(), zero.clone(), zero.clone()]),
local.c,
local.abs_c,
local.shard,
local.channel,
local.abs_c_alu_event_nonce,
local.abs_c_alu_event,
);
builder.send_alu(
AB::Expr::from_canonical_u32(Opcode::ADD as u32),
Word([zero.clone(), zero.clone(), zero.clone(), zero.clone()]),
local.remainder,
local.abs_remainder,
local.shard,
local.channel,
local.abs_rem_alu_event_nonce,
local.abs_rem_alu_event,
);
// max(abs(c), 1) = abs(c) * (1 - is_c_0) + 1 * is_c_0
let max_abs_c_or_1: Word<AB::Expr> = {
let mut v = vec![zero.clone(); WORD_SIZE];
// Set the least significant byte to 1 if is_c_0 is true.
v[0] = local.is_c_0.result * one.clone()
+ (one.clone() - local.is_c_0.result) * local.abs_c[0];
// Set the remaining bytes to 0 if is_c_0 is true.
for i in 1..WORD_SIZE {
v[i] = (one.clone() - local.is_c_0.result) * local.abs_c[i];
}
Word(v.try_into().unwrap_or_else(|_| panic!("Incorrect length")))
};
for i in 0..WORD_SIZE {
builder.assert_eq(local.max_abs_c_or_1[i], max_abs_c_or_1[i].clone());
}
// Handle cases:
// - If is_real == 0 then remainder_check_multiplicity == 0 is forced.
// - If is_real == 1 then is_c_0_result must be the expected one, so
// remainder_check_multiplicity = (1 - is_c_0_result) * is_real.
builder.assert_eq(
(AB::Expr::one() - local.is_c_0.result) * local.is_real,
local.remainder_check_multiplicity,
);
// the cleaner idea is simply remainder_check_multiplicity == (1 - is_c_0_result) * is_real
// Check that the absolute value selector columns are computed correctly.
builder.assert_eq(local.abs_c_alu_event, local.c_neg * local.is_real);
builder.assert_eq(local.abs_rem_alu_event, local.rem_neg * local.is_real);
// Dispatch abs(remainder) < max(abs(c), 1), this is equivalent to abs(remainder) <
// abs(c) if not division by 0.
builder.send_alu(
AB::Expr::from_canonical_u32(Opcode::SLTU as u32),
Word([one.clone(), zero.clone(), zero.clone(), zero.clone()]),
local.abs_remainder,
local.max_abs_c_or_1,
local.shard,
local.channel,
local.abs_nonce,
local.remainder_check_multiplicity,
);
}
// Check that the MSBs are correct.
{
let msb_pairs = [
(local.b_msb, local.b[WORD_SIZE - 1]),
(local.c_msb, local.c[WORD_SIZE - 1]),
(local.rem_msb, local.remainder[WORD_SIZE - 1]),
];
let opcode = AB::F::from_canonical_u32(ByteOpcode::MSB as u32);
for msb_pair in msb_pairs.iter() {
let msb = msb_pair.0;
let byte = msb_pair.1;
builder.send_byte(
opcode,
msb,
byte,
zero.clone(),
local.shard,
local.channel,
local.is_real,
);
}
}
// Range check all the bytes.
{
builder.slice_range_check_u8(
&local.quotient.0,
local.shard,
local.channel,
local.is_real,
);
builder.slice_range_check_u8(
&local.remainder.0,
local.shard,
local.channel,
local.is_real,
);
local.carry.iter().for_each(|carry| {
builder.assert_bool(*carry);
});
builder.slice_range_check_u8(
&local.c_times_quotient,
local.shard,
local.channel,
local.is_real,
);
}
// Check that the flags are boolean.
{
let bool_flags = [
local.is_div,
local.is_divu,
local.is_rem,
local.is_remu,
local.is_overflow,
local.b_msb,
local.rem_msb,
local.c_msb,
local.b_neg,
local.rem_neg,
local.c_neg,
local.is_real,
local.abs_c_alu_event,
local.abs_rem_alu_event,
];
for flag in bool_flags.iter() {
builder.assert_bool(*flag);
}
}
// Receive the arguments.
{
// Exactly one of the opcode flags must be on.
builder.assert_eq(
one.clone(),
local.is_divu + local.is_remu + local.is_div + local.is_rem,
);
let opcode = {
let divu: AB::Expr = AB::F::from_canonical_u32(Opcode::DIVU as u32).into();
let remu: AB::Expr = AB::F::from_canonical_u32(Opcode::REMU as u32).into();
let div: AB::Expr = AB::F::from_canonical_u32(Opcode::DIV as u32).into();
let rem: AB::Expr = AB::F::from_canonical_u32(Opcode::REM as u32).into();
local.is_divu * divu
+ local.is_remu * remu
+ local.is_div * div
+ local.is_rem * rem
};
builder.receive_alu(
opcode,
local.a,
local.b,
local.c,
local.shard,
local.channel,
local.nonce,
local.is_real,
);
}
}
}
#[cfg(test)]
mod tests {
use crate::{
air::MachineAir,
stark::StarkGenericConfig,
utils::{uni_stark_prove as prove, uni_stark_verify as verify},
};
use p3_baby_bear::BabyBear;
use p3_matrix::dense::RowMajorMatrix;
use crate::{
alu::AluEvent,
runtime::{ExecutionRecord, Opcode},
utils::BabyBearPoseidon2,
};
use super::DivRemChip;
#[test]
fn generate_trace() {
let mut shard = ExecutionRecord::default();
shard.divrem_events = vec![AluEvent::new(0, 0, 0, Opcode::DIVU, 2, 17, 3)];
let chip = DivRemChip::default();
let trace: RowMajorMatrix<BabyBear> =
chip.generate_trace(&shard, &mut ExecutionRecord::default());
println!("{:?}", trace.values)
}
fn neg(a: u32) -> u32 {
u32::MAX - a + 1
}
#[test]
fn prove_babybear() {
let config = BabyBearPoseidon2::new();
let mut challenger = config.challenger();
let mut divrem_events: Vec<AluEvent> = Vec::new();
let divrems: Vec<(Opcode, u32, u32, u32)> = vec![
(Opcode::DIVU, 3, 20, 6),
(Opcode::DIVU, 715827879, neg(20), 6),
(Opcode::DIVU, 0, 20, neg(6)),
(Opcode::DIVU, 0, neg(20), neg(6)),
(Opcode::DIVU, 1 << 31, 1 << 31, 1),
(Opcode::DIVU, 0, 1 << 31, neg(1)),
(Opcode::DIVU, u32::MAX, 1 << 31, 0),
(Opcode::DIVU, u32::MAX, 1, 0),
(Opcode::DIVU, u32::MAX, 0, 0),
(Opcode::REMU, 4, 18, 7),
(Opcode::REMU, 6, neg(20), 11),
(Opcode::REMU, 23, 23, neg(6)),
(Opcode::REMU, neg(21), neg(21), neg(11)),
(Opcode::REMU, 5, 5, 0),
(Opcode::REMU, neg(1), neg(1), 0),
(Opcode::REMU, 0, 0, 0),
(Opcode::REM, 7, 16, 9),
(Opcode::REM, neg(4), neg(22), 6),
(Opcode::REM, 1, 25, neg(3)),
(Opcode::REM, neg(2), neg(22), neg(4)),
(Opcode::REM, 0, 873, 1),
(Opcode::REM, 0, 873, neg(1)),
(Opcode::REM, 5, 5, 0),
(Opcode::REM, neg(5), neg(5), 0),
(Opcode::REM, 0, 0, 0),
(Opcode::REM, 0, 0x80000001, neg(1)),
(Opcode::DIV, 3, 18, 6),
(Opcode::DIV, neg(6), neg(24), 4),
(Opcode::DIV, neg(2), 16, neg(8)),
(Opcode::DIV, neg(1), 0, 0),
(Opcode::DIV, 1 << 31, 1 << 31, neg(1)),
(Opcode::REM, 0, 1 << 31, neg(1)),
];
for t in divrems.iter() {
divrem_events.push(AluEvent::new(0, 9, 0, t.0, t.1, t.2, t.3));
}
// Append more events until we have 1000 tests.
for _ in 0..(1000 - divrems.len()) {
divrem_events.push(AluEvent::new(0, 0, 0, Opcode::DIVU, 1, 1, 1));
}
let mut shard = ExecutionRecord::default();
shard.divrem_events = divrem_events;
let chip = DivRemChip::default();
let trace: RowMajorMatrix<BabyBear> =
chip.generate_trace(&shard, &mut ExecutionRecord::default());
let proof = prove::<BabyBearPoseidon2, _>(&config, &chip, &mut challenger, trace);
let mut challenger = config.challenger();
verify(&config, &chip, &mut challenger, &proof).unwrap();
}
}