1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use core::borrow::{Borrow, BorrowMut};
use core::mem::size_of;

use hashbrown::HashMap;
use itertools::Itertools;
use p3_air::AirBuilder;
use p3_air::{Air, BaseAir};
use p3_field::{AbstractField, PrimeField};
use p3_matrix::dense::RowMajorMatrix;
use p3_matrix::Matrix;
use p3_maybe_rayon::prelude::{IntoParallelRefIterator, ParallelIterator, ParallelSlice};
use sp1_derive::AlignedBorrow;

use crate::air::MachineAir;
use crate::air::{SP1AirBuilder, Word};
use crate::bytes::event::ByteRecord;
use crate::bytes::{ByteLookupEvent, ByteOpcode};
use crate::runtime::{ExecutionRecord, Opcode, Program};
use crate::utils::pad_to_power_of_two;

use super::AluEvent;

/// The number of main trace columns for `BitwiseChip`.
pub const NUM_BITWISE_COLS: usize = size_of::<BitwiseCols<u8>>();

/// A chip that implements bitwise operations for the opcodes XOR, OR, and AND.
#[derive(Default)]
pub struct BitwiseChip;

/// The column layout for the chip.
#[derive(AlignedBorrow, Default, Clone, Copy)]
#[repr(C)]
pub struct BitwiseCols<T> {
    /// The shard number, used for byte lookup table.
    pub shard: T,

    /// The channel number, used for byte lookup table.
    pub channel: T,

    /// The nonce of the operation.
    pub nonce: T,

    /// The output operand.
    pub a: Word<T>,

    /// The first input operand.
    pub b: Word<T>,

    /// The second input operand.
    pub c: Word<T>,

    /// If the opcode is XOR.
    pub is_xor: T,

    // If the opcode is OR.
    pub is_or: T,

    /// If the opcode is AND.
    pub is_and: T,
}

impl<F: PrimeField> MachineAir<F> for BitwiseChip {
    type Record = ExecutionRecord;

    type Program = Program;

    fn name(&self) -> String {
        "Bitwise".to_string()
    }

    fn generate_trace(
        &self,
        input: &ExecutionRecord,
        _: &mut ExecutionRecord,
    ) -> RowMajorMatrix<F> {
        let rows = input
            .bitwise_events
            .par_iter()
            .map(|event| {
                let mut row = [F::zero(); NUM_BITWISE_COLS];
                let cols: &mut BitwiseCols<F> = row.as_mut_slice().borrow_mut();
                let mut blu = Vec::new();
                self.event_to_row(event, cols, &mut blu);
                row
            })
            .collect::<Vec<_>>();

        // Convert the trace to a row major matrix.
        let mut trace = RowMajorMatrix::new(
            rows.into_iter().flatten().collect::<Vec<_>>(),
            NUM_BITWISE_COLS,
        );

        // Pad the trace to a power of two.
        pad_to_power_of_two::<NUM_BITWISE_COLS, F>(&mut trace.values);

        for i in 0..trace.height() {
            let cols: &mut BitwiseCols<F> =
                trace.values[i * NUM_BITWISE_COLS..(i + 1) * NUM_BITWISE_COLS].borrow_mut();
            cols.nonce = F::from_canonical_usize(i);
        }

        trace
    }

    fn generate_dependencies(&self, input: &Self::Record, output: &mut Self::Record) {
        let chunk_size = std::cmp::max(input.bitwise_events.len() / num_cpus::get(), 1);

        let blu_batches = input
            .bitwise_events
            .par_chunks(chunk_size)
            .map(|events| {
                let mut blu: HashMap<u32, HashMap<ByteLookupEvent, usize>> = HashMap::new();
                events.iter().for_each(|event| {
                    let mut row = [F::zero(); NUM_BITWISE_COLS];
                    let cols: &mut BitwiseCols<F> = row.as_mut_slice().borrow_mut();
                    self.event_to_row(event, cols, &mut blu);
                });
                blu
            })
            .collect::<Vec<_>>();

        output.add_sharded_byte_lookup_events(blu_batches.iter().collect_vec());
    }

    fn included(&self, shard: &Self::Record) -> bool {
        !shard.bitwise_events.is_empty()
    }
}

impl BitwiseChip {
    /// Create a row from an event.
    fn event_to_row<F: PrimeField>(
        &self,
        event: &AluEvent,
        cols: &mut BitwiseCols<F>,
        blu: &mut impl ByteRecord,
    ) {
        let a = event.a.to_le_bytes();
        let b = event.b.to_le_bytes();
        let c = event.c.to_le_bytes();

        cols.shard = F::from_canonical_u32(event.shard);
        cols.channel = F::from_canonical_u8(event.channel);
        cols.a = Word::from(event.a);
        cols.b = Word::from(event.b);
        cols.c = Word::from(event.c);

        cols.is_xor = F::from_bool(event.opcode == Opcode::XOR);
        cols.is_or = F::from_bool(event.opcode == Opcode::OR);
        cols.is_and = F::from_bool(event.opcode == Opcode::AND);

        for ((b_a, b_b), b_c) in a.into_iter().zip(b).zip(c) {
            let byte_event = ByteLookupEvent {
                shard: event.shard,
                channel: event.channel,
                opcode: ByteOpcode::from(event.opcode),
                a1: b_a as u16,
                a2: 0,
                b: b_b,
                c: b_c,
            };
            blu.add_byte_lookup_event(byte_event);
        }
    }
}

impl<F> BaseAir<F> for BitwiseChip {
    fn width(&self) -> usize {
        NUM_BITWISE_COLS
    }
}

impl<AB> Air<AB> for BitwiseChip
where
    AB: SP1AirBuilder,
{
    fn eval(&self, builder: &mut AB) {
        let main = builder.main();
        let local = main.row_slice(0);
        let local: &BitwiseCols<AB::Var> = (*local).borrow();
        let next = main.row_slice(1);
        let next: &BitwiseCols<AB::Var> = (*next).borrow();

        // Constrain the incrementing nonce.
        builder.when_first_row().assert_zero(local.nonce);
        builder
            .when_transition()
            .assert_eq(local.nonce + AB::Expr::one(), next.nonce);

        // Get the opcode for the operation.
        let opcode = local.is_xor * ByteOpcode::XOR.as_field::<AB::F>()
            + local.is_or * ByteOpcode::OR.as_field::<AB::F>()
            + local.is_and * ByteOpcode::AND.as_field::<AB::F>();

        // Get a multiplicity of `1` only for a true row.
        let mult = local.is_xor + local.is_or + local.is_and;
        for ((a, b), c) in local.a.into_iter().zip(local.b).zip(local.c) {
            builder.send_byte(
                opcode.clone(),
                a,
                b,
                c,
                local.shard,
                local.channel,
                mult.clone(),
            );
        }

        // Get the cpu opcode, which corresponds to the opcode being sent in the CPU table.
        let cpu_opcode = local.is_xor * Opcode::XOR.as_field::<AB::F>()
            + local.is_or * Opcode::OR.as_field::<AB::F>()
            + local.is_and * Opcode::AND.as_field::<AB::F>();

        // Receive the arguments.
        builder.receive_alu(
            cpu_opcode,
            local.a,
            local.b,
            local.c,
            local.shard,
            local.channel,
            local.nonce,
            local.is_xor + local.is_or + local.is_and,
        );

        let is_real = local.is_xor + local.is_or + local.is_and;
        builder.assert_bool(local.is_xor);
        builder.assert_bool(local.is_or);
        builder.assert_bool(local.is_and);
        builder.assert_bool(is_real);
    }
}

#[cfg(test)]
mod tests {
    use p3_baby_bear::BabyBear;
    use p3_matrix::dense::RowMajorMatrix;

    use crate::air::MachineAir;
    use crate::stark::StarkGenericConfig;
    use crate::utils::{uni_stark_prove as prove, uni_stark_verify as verify};

    use super::BitwiseChip;
    use crate::alu::AluEvent;
    use crate::runtime::{ExecutionRecord, Opcode};
    use crate::utils::BabyBearPoseidon2;

    #[test]
    fn generate_trace() {
        let mut shard = ExecutionRecord::default();
        shard.bitwise_events = vec![AluEvent::new(0, 0, 0, Opcode::XOR, 25, 10, 19)];
        let chip = BitwiseChip::default();
        let trace: RowMajorMatrix<BabyBear> =
            chip.generate_trace(&shard, &mut ExecutionRecord::default());
        println!("{:?}", trace.values)
    }

    #[test]
    fn prove_babybear() {
        let config = BabyBearPoseidon2::new();
        let mut challenger = config.challenger();

        let mut shard = ExecutionRecord::default();
        shard.bitwise_events = [
            AluEvent::new(0, 0, 0, Opcode::XOR, 25, 10, 19),
            AluEvent::new(0, 1, 0, Opcode::OR, 27, 10, 19),
            AluEvent::new(0, 0, 0, Opcode::AND, 2, 10, 19),
        ]
        .repeat(1000);
        let chip = BitwiseChip::default();
        let trace: RowMajorMatrix<BabyBear> =
            chip.generate_trace(&shard, &mut ExecutionRecord::default());
        let proof = prove::<BabyBearPoseidon2, _>(&config, &chip, &mut challenger, trace);

        let mut challenger = config.challenger();
        verify(&config, &chip, &mut challenger, &proof).unwrap();
    }
}