1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
use p3_field::PrimeField32;

use super::{MemoryAccessCols, MemoryReadCols, MemoryReadWriteCols, MemoryWriteCols};
use crate::bytes::event::ByteRecord;
use crate::runtime::{MemoryReadRecord, MemoryRecord, MemoryRecordEnum, MemoryWriteRecord};

impl<F: PrimeField32> MemoryWriteCols<F> {
    pub fn populate(
        &mut self,
        channel: u8,
        record: MemoryWriteRecord,
        output: &mut impl ByteRecord,
    ) {
        let current_record = MemoryRecord {
            value: record.value,
            shard: record.shard,
            timestamp: record.timestamp,
        };
        let prev_record = MemoryRecord {
            value: record.prev_value,
            shard: record.prev_shard,
            timestamp: record.prev_timestamp,
        };
        self.prev_value = prev_record.value.into();
        self.access
            .populate_access(channel, current_record, prev_record, output);
    }
}

impl<F: PrimeField32> MemoryReadCols<F> {
    pub fn populate(
        &mut self,
        channel: u8,
        record: MemoryReadRecord,
        output: &mut impl ByteRecord,
    ) {
        let current_record = MemoryRecord {
            value: record.value,
            shard: record.shard,
            timestamp: record.timestamp,
        };
        let prev_record = MemoryRecord {
            value: record.value,
            shard: record.prev_shard,
            timestamp: record.prev_timestamp,
        };
        self.access
            .populate_access(channel, current_record, prev_record, output);
    }
}

impl<F: PrimeField32> MemoryReadWriteCols<F> {
    pub fn populate(
        &mut self,
        channel: u8,
        record: MemoryRecordEnum,
        output: &mut impl ByteRecord,
    ) {
        match record {
            MemoryRecordEnum::Read(read_record) => self.populate_read(channel, read_record, output),
            MemoryRecordEnum::Write(write_record) => {
                self.populate_write(channel, write_record, output)
            }
        }
    }

    pub fn populate_write(
        &mut self,
        channel: u8,
        record: MemoryWriteRecord,
        output: &mut impl ByteRecord,
    ) {
        let current_record = MemoryRecord {
            value: record.value,
            shard: record.shard,
            timestamp: record.timestamp,
        };
        let prev_record = MemoryRecord {
            value: record.prev_value,
            shard: record.prev_shard,
            timestamp: record.prev_timestamp,
        };
        self.prev_value = prev_record.value.into();
        self.access
            .populate_access(channel, current_record, prev_record, output);
    }

    pub fn populate_read(
        &mut self,
        channel: u8,
        record: MemoryReadRecord,
        output: &mut impl ByteRecord,
    ) {
        let current_record = MemoryRecord {
            value: record.value,
            shard: record.shard,
            timestamp: record.timestamp,
        };
        let prev_record = MemoryRecord {
            value: record.value,
            shard: record.prev_shard,
            timestamp: record.prev_timestamp,
        };
        self.prev_value = prev_record.value.into();
        self.access
            .populate_access(channel, current_record, prev_record, output);
    }
}

impl<F: PrimeField32> MemoryAccessCols<F> {
    pub(crate) fn populate_access(
        &mut self,
        channel: u8,
        current_record: MemoryRecord,
        prev_record: MemoryRecord,
        output: &mut impl ByteRecord,
    ) {
        self.value = current_record.value.into();

        self.prev_shard = F::from_canonical_u32(prev_record.shard);
        self.prev_clk = F::from_canonical_u32(prev_record.timestamp);

        // Fill columns used for verifying current memory access time value is greater than previous's.
        let use_clk_comparison = prev_record.shard == current_record.shard;
        self.compare_clk = F::from_bool(use_clk_comparison);
        let prev_time_value = if use_clk_comparison {
            prev_record.timestamp
        } else {
            prev_record.shard
        };
        let current_time_value = if use_clk_comparison {
            current_record.timestamp
        } else {
            current_record.shard
        };

        let diff_minus_one = current_time_value - prev_time_value - 1;
        let diff_16bit_limb = (diff_minus_one & 0xffff) as u16;
        self.diff_16bit_limb = F::from_canonical_u16(diff_16bit_limb);
        let diff_8bit_limb = (diff_minus_one >> 16) & 0xff;
        self.diff_8bit_limb = F::from_canonical_u32(diff_8bit_limb);

        let shard = current_record.shard;

        // Add a byte table lookup with the 16Range op.
        output.add_u16_range_check(shard, channel, diff_16bit_limb);

        // Add a byte table lookup with the U8Range op.
        output.add_u8_range_check(shard, channel, 0, diff_8bit_limb as u8);
    }
}