sp1_core_executor/
hook.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
use core::fmt::Debug;

use std::sync::{Arc, RwLock, RwLockWriteGuard};

use hashbrown::HashMap;
use sp1_curves::{edwards::ed25519::ed25519_sqrt, params::FieldParameters, BigUint, Integer, One};

use crate::Executor;

/// A runtime hook, wrapped in a smart pointer.
pub type BoxedHook<'a> = Arc<RwLock<dyn Hook + Send + Sync + 'a>>;

pub use sp1_primitives::consts::fd::*;

/// A runtime hook. May be called during execution by writing to a specified file descriptor,
/// accepting and returning arbitrary data.
pub trait Hook {
    /// Invoke the runtime hook with a standard environment and arbitrary data.
    /// Returns the computed data.
    fn invoke_hook(&mut self, env: HookEnv, buf: &[u8]) -> Vec<Vec<u8>>;
}

impl<F: FnMut(HookEnv, &[u8]) -> Vec<Vec<u8>>> Hook for F {
    /// Invokes the function `self` as a hook.
    fn invoke_hook(&mut self, env: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
        self(env, buf)
    }
}

/// Wrap a function in a smart pointer so it may be placed in a `HookRegistry`.
///
/// Note: the Send + Sync requirement may be logically extraneous. Requires further investigation.
pub fn hookify<'a>(
    f: impl FnMut(HookEnv, &[u8]) -> Vec<Vec<u8>> + Send + Sync + 'a,
) -> BoxedHook<'a> {
    Arc::new(RwLock::new(f))
}

/// A registry of hooks to call, indexed by the file descriptors through which they are accessed.
#[derive(Clone)]
pub struct HookRegistry<'a> {
    /// Table of registered hooks. Prefer using `Runtime::hook`, ` Runtime::hook_env`,
    /// and `HookRegistry::get` over interacting with this field directly.
    pub(crate) table: HashMap<u32, BoxedHook<'a>>,
}

impl<'a> HookRegistry<'a> {
    /// Create a default [`HookRegistry`].
    #[must_use]
    pub fn new() -> Self {
        HookRegistry::default()
    }

    /// Create an empty [`HookRegistry`].
    #[must_use]
    pub fn empty() -> Self {
        Self { table: HashMap::default() }
    }

    /// Get a hook with exclusive write access, if it exists.
    ///
    /// Note: This function should not be called in async contexts, unless you know what you are
    /// doing.
    #[must_use]
    pub fn get(&self, fd: u32) -> Option<RwLockWriteGuard<dyn Hook + Send + Sync + 'a>> {
        // Calling `.unwrap()` panics on a poisoned lock. Should never happen normally.
        self.table.get(&fd).map(|x| x.write().unwrap())
    }
}

impl Default for HookRegistry<'_> {
    fn default() -> Self {
        // When `LazyCell` gets stabilized (1.81.0), we can use it to avoid unnecessary allocations.
        let table = HashMap::from([
            // Note: To ensure any `fd` value is synced with `zkvm/precompiles/src/io.rs`,
            // add an assertion to the test `hook_fds_match` below.
            (FD_ECRECOVER_HOOK, hookify(hook_ecrecover)),
            (FD_EDDECOMPRESS, hookify(hook_ed_decompress)),
            (FD_RSA_MUL_MOD, hookify(hook_rsa_mul_mod)),
            (FD_BLS12_381_SQRT, hookify(bls::hook_bls12_381_sqrt)),
            (FD_BLS12_381_INVERSE, hookify(bls::hook_bls12_381_inverse)),
        ]);

        Self { table }
    }
}

impl Debug for HookRegistry<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut keys = self.table.keys().collect::<Vec<_>>();
        keys.sort_unstable();
        f.debug_struct("HookRegistry")
            .field(
                "table",
                &format_args!("{{{} hooks registered at {:?}}}", self.table.len(), keys),
            )
            .finish()
    }
}

/// Environment that a hook may read from.
pub struct HookEnv<'a, 'b: 'a> {
    /// The runtime.
    pub runtime: &'a Executor<'b>,
}

/// The hook for the `ecrecover` patches.
///
/// The input should be of the form [(`curve_id_u8` | `r_is_y_odd_u8` << 7) || `r` || `alpha`] where:
/// * `curve_id` is 1 for secp256k1 and 2 for secp256r1
/// * `r_is_y_odd` is 0 if r is even and 1 if r is is odd
/// * r is the x-coordinate of the point, which should be 32 bytes,
/// * alpha := r * r * r * (a * r) + b, which should be 32 bytes.
///
/// Returns vec![vec![1], `y`, `r_inv`] if the point is decompressable
/// and vec![vec![0],`nqr_hint`] if not.
#[must_use]
pub fn hook_ecrecover(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
    assert!(buf.len() == 64 + 1, "ecrecover should have length 65");

    let curve_id = buf[0] & 0b0111_1111;
    let r_is_y_odd = buf[0] & 0b1000_0000 != 0;

    let r_bytes: [u8; 32] = buf[1..33].try_into().unwrap();
    let alpha_bytes: [u8; 32] = buf[33..65].try_into().unwrap();

    match curve_id {
        1 => ecrecover::handle_secp256k1(r_bytes, alpha_bytes, r_is_y_odd),
        2 => ecrecover::handle_secp256r1(r_bytes, alpha_bytes, r_is_y_odd),
        _ => unimplemented!("Unsupported curve id: {}", curve_id),
    }
}

mod ecrecover {
    use sp1_curves::{k256, p256};

    /// The non-quadratic residue for the curve for secp256k1 and secp256r1.
    const NQR: [u8; 32] = {
        let mut nqr = [0; 32];
        nqr[31] = 3;
        nqr
    };

    pub(super) fn handle_secp256k1(r: [u8; 32], alpha: [u8; 32], r_y_is_odd: bool) -> Vec<Vec<u8>> {
        use k256::elliptic_curve::ff::PrimeField;
        use k256::FieldBytes as K256FieldBytes;
        use k256::FieldElement as K256FieldElement;
        use k256::Scalar as K256Scalar;

        let r = K256FieldElement::from_bytes(K256FieldBytes::from_slice(&r)).unwrap();
        debug_assert!(!bool::from(r.is_zero()), "r should not be zero");

        let alpha = K256FieldElement::from_bytes(K256FieldBytes::from_slice(&alpha)).unwrap();
        assert!(!bool::from(alpha.is_zero()), "alpha should not be zero");

        // nomralize the y-coordinate always to be consistent.
        if let Some(mut y_coord) = alpha.sqrt().into_option().map(|y| y.normalize()) {
            let r = K256Scalar::from_repr(r.to_bytes()).unwrap();
            let r_inv = r.invert().expect("Non zero r scalar");

            if r_y_is_odd != bool::from(y_coord.is_odd()) {
                y_coord = y_coord.negate(1);
                y_coord = y_coord.normalize();
            }

            vec![vec![1], y_coord.to_bytes().to_vec(), r_inv.to_bytes().to_vec()]
        } else {
            let nqr_field = K256FieldElement::from_bytes(K256FieldBytes::from_slice(&NQR)).unwrap();
            let qr = alpha * nqr_field;
            let root = qr.sqrt().expect("if alpha is not a square, then qr should be a square");

            vec![vec![0], root.to_bytes().to_vec()]
        }
    }

    pub(super) fn handle_secp256r1(r: [u8; 32], alpha: [u8; 32], r_y_is_odd: bool) -> Vec<Vec<u8>> {
        use p256::elliptic_curve::ff::PrimeField;
        use p256::FieldBytes as P256FieldBytes;
        use p256::FieldElement as P256FieldElement;
        use p256::Scalar as P256Scalar;

        let r = P256FieldElement::from_bytes(P256FieldBytes::from_slice(&r)).unwrap();
        debug_assert!(!bool::from(r.is_zero()), "r should not be zero");

        let alpha = P256FieldElement::from_bytes(P256FieldBytes::from_slice(&alpha)).unwrap();
        debug_assert!(!bool::from(alpha.is_zero()), "alpha should not be zero");

        if let Some(mut y_coord) = alpha.sqrt().into_option() {
            let r = P256Scalar::from_repr(r.to_bytes()).unwrap();
            let r_inv = r.invert().expect("Non zero r scalar");

            if r_y_is_odd != bool::from(y_coord.is_odd()) {
                y_coord = -y_coord;
            }

            vec![vec![1], y_coord.to_bytes().to_vec(), r_inv.to_bytes().to_vec()]
        } else {
            let nqr_field = P256FieldElement::from_bytes(P256FieldBytes::from_slice(&NQR)).unwrap();
            let qr = alpha * nqr_field;
            let root = qr.sqrt().expect("if alpha is not a square, then qr should be a square");

            vec![vec![0], root.to_bytes().to_vec()]
        }
    }
}

/// Checks if a compressed Edwards point can be decompressed.
///
/// # Arguments
/// * `env` - The environment in which the hook is invoked.
/// * `buf` - The buffer containing the compressed Edwards point.
///    - The compressed Edwards point is 32 bytes.
///    - The high bit of the last byte is the sign bit.
///
/// Returns vec![vec![1]] if the point is decompressable.
/// Returns vec![vec![0], `v_inv`, `nqr_hint`] if the point is not decompressable.
///
/// WARNING: This function merely hints at the validity of the compressed point. These values must
/// be constrained by the zkVM for correctness.
#[must_use]
pub fn hook_ed_decompress(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
    const NQR_CURVE_25519: u8 = 2;
    let modulus = sp1_curves::edwards::ed25519::Ed25519BaseField::modulus();

    let mut bytes: [u8; 32] = buf[..32].try_into().unwrap();
    // Mask the sign bit.
    bytes[31] &= 0b0111_1111;

    // The AIR asserts canon inputs, so hint here if it cant be satisfied.
    let y = BigUint::from_bytes_le(&bytes);
    if y >= modulus {
        return vec![vec![0]];
    }

    let v = BigUint::from_bytes_le(&buf[32..]);
    // This is computed as dy^2 - 1
    // so it should always be in the field.
    assert!(v < modulus, "V is not a valid field element");

    // For a point to be decompressable, (yy - 1) / (yy * d + 1) must be a quadratic residue.
    let v_inv = v.modpow(&(&modulus - BigUint::from(2u64)), &modulus);
    let u = (&y * &y + &modulus - BigUint::one()) % &modulus;
    let u_div_v = (&u * &v_inv) % &modulus;

    // Note: Our sqrt impl doesnt care about canon representation,
    // however we have already checked that were less than the modulus.
    if ed25519_sqrt(&u_div_v).is_some() {
        vec![vec![1]]
    } else {
        let qr = (u_div_v * NQR_CURVE_25519) % &modulus;
        let root = ed25519_sqrt(&qr).unwrap();

        // Pad the results, since this may not be a full 32 bytes.
        let v_inv_bytes = v_inv.to_bytes_le();
        let mut v_inv_padded = [0_u8; 32];
        v_inv_padded[..v_inv_bytes.len()].copy_from_slice(&v_inv.to_bytes_le());

        let root_bytes = root.to_bytes_le();
        let mut root_padded = [0_u8; 32];
        root_padded[..root_bytes.len()].copy_from_slice(&root.to_bytes_le());

        vec![vec![0], v_inv_padded.to_vec(), root_padded.to_vec()]
    }
}

mod bls {
    use super::pad_to_be;
    use super::{BigUint, HookEnv};
    use sp1_curves::params::FieldParameters;
    use sp1_curves::weierstrass::bls12_381::Bls12381BaseField;
    use sp1_curves::Zero;

    /// A non-quadratic residue for the `12_381` base field in big endian.
    pub const NQR_BLS12_381: [u8; 48] = {
        let mut nqr = [0; 48];
        nqr[47] = 2;
        nqr
    };

    /// The base field modulus for the `12_381` curve, in little endian.
    pub const BLS12_381_MODULUS: &[u8] = Bls12381BaseField::MODULUS;

    /// Given a field element, in big endian, this function computes the square root.
    ///
    /// - If the field element is the additive identity, this function returns `vec![vec![1], vec![0; 48]]`.
    /// - If the field element is a quadratic residue, this function returns `vec![vec![1], vec![sqrt(fe)]  ]`.
    /// - If the field element (fe) is not a quadratic residue, this function returns `vec![vec![0], vec![sqrt(``NQR_BLS12_381`` * fe)]]`.
    pub fn hook_bls12_381_sqrt(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
        let field_element = BigUint::from_bytes_be(&buf[..48]);

        // This should be checked in the VM as its easier than dispatching a hook call.
        // But for completeness we include this happy path also.
        if field_element.is_zero() {
            return vec![vec![1], vec![0; 48]];
        }

        let modulus = BigUint::from_bytes_le(BLS12_381_MODULUS);

        // Since `BLS12_381_MODULUS` == 3 mod 4,. we can use shanks methods.
        // This means we only need to exponentiate by `(modulus + 1) / 4`.
        let exp = (&modulus + BigUint::from(1u64)) / BigUint::from(4u64);
        let sqrt = field_element.modpow(&exp, &modulus);

        // Shanks methods only works if the field element is a quadratic residue.
        // So we need to check if the square of the sqrt is equal to the field element.
        let square = (&sqrt * &sqrt) % &modulus;
        if square != field_element {
            let nqr = BigUint::from_bytes_be(&NQR_BLS12_381);
            let qr = (&nqr * &field_element) % &modulus;

            // By now, the product of two non-quadratic residues is a quadratic residue.
            // So we can use shanks methods again to get its square root.
            //
            // We pass this root back to the VM to constrain the "failure" case.
            let root = qr.modpow(&exp, &modulus);

            assert!((&root * &root) % &modulus == qr, "NQR sanity check failed, this is a bug.");

            return vec![vec![0], pad_to_be(&root, 48)];
        }

        vec![vec![1], pad_to_be(&sqrt, 48)]
    }

    /// Given a field element, in big endian, this function computes the inverse.
    ///
    /// This functions will panic if the additive identity is passed in.
    pub fn hook_bls12_381_inverse(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
        let field_element = BigUint::from_bytes_be(&buf[..48]);

        // Zero is not invertible, and we dont want to have to return a status from here.
        assert!(!field_element.is_zero(), "Field element is the additive identity");

        let modulus = BigUint::from_bytes_le(BLS12_381_MODULUS);

        // Compute the inverse using Fermat's little theorem, ie, a^(p-2) = a^-1 mod p.
        let inverse = field_element.modpow(&(&modulus - BigUint::from(2u64)), &modulus);

        vec![pad_to_be(&inverse, 48)]
    }
}

/// Given the product of some 256-byte numbers and a modulus, this function does a modular
/// reduction and hints back the values to the vm in order to constrain it.
///
/// # Arguments
///
/// * `env` - The environment in which the hook is invoked.
/// * `buf` - The buffer containing the le bytes of the 512 byte product and the 256 byte modulus.
///
/// Returns The le bytes of the product % modulus (512 bytes)
/// and the quotient floor(product/modulus) (256 bytes).
///
/// WANRING: This function is used to perform a modular reduction outside of the zkVM context.
/// These values must be constrained by the zkVM for correctness.
#[must_use]
pub fn hook_rsa_mul_mod(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
    assert_eq!(
        buf.len(),
        256 + 256 + 256,
        "rsa_mul_mod input should have length 256 + 256 + 256, this is a bug."
    );

    let prod: &[u8; 512] = buf[..512].try_into().unwrap();
    let m: &[u8; 256] = buf[512..].try_into().unwrap();

    let prod = BigUint::from_bytes_le(prod);
    let m = BigUint::from_bytes_le(m);

    let (q, rem) = prod.div_rem(&m);

    let mut rem = rem.to_bytes_le();
    rem.resize(256, 0);

    let mut q = q.to_bytes_le();
    q.resize(256, 0);

    vec![rem, q]
}

pub(crate) mod deprecated_hooks {
    use super::HookEnv;
    use sp1_curves::k256::ecdsa::{RecoveryId, Signature, VerifyingKey};
    use sp1_curves::k256::elliptic_curve::ops::Invert;
    use sp1_curves::p256::ecdsa::Signature as p256Signature;

    /// Recovers the public key from the signature and message hash using the k256 crate.
    ///
    /// # Arguments
    ///
    /// * `env` - The environment in which the hook is invoked.
    /// * `buf` - The buffer containing the signature and message hash.
    ///     - The signature is 65 bytes, the first 64 bytes are the signature and the last byte is the
    ///       recovery ID.
    ///     - The message hash is 32 bytes.
    ///
    /// The result is returned as a pair of bytes, where the first 32 bytes are the X coordinate
    /// and the second 32 bytes are the Y coordinate of the decompressed point.
    ///
    /// WARNING: This function is used to recover the public key outside of the zkVM context. These
    /// values must be constrained by the zkVM for correctness.
    #[must_use]
    pub fn hook_ecrecover(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
        assert_eq!(buf.len(), 65 + 32, "ecrecover input should have length 65 + 32");
        let (sig, msg_hash) = buf.split_at(65);
        let sig: &[u8; 65] = sig.try_into().unwrap();
        let msg_hash: &[u8; 32] = msg_hash.try_into().unwrap();

        let mut recovery_id = sig[64];
        let mut sig = Signature::from_slice(&sig[..64]).unwrap();

        if let Some(sig_normalized) = sig.normalize_s() {
            sig = sig_normalized;
            recovery_id ^= 1;
        };
        let recid = RecoveryId::from_byte(recovery_id).expect("Computed recovery ID is invalid!");

        let recovered_key = VerifyingKey::recover_from_prehash(&msg_hash[..], &sig, recid).unwrap();
        let bytes = recovered_key.to_sec1_bytes();

        let (_, s) = sig.split_scalars();
        let s_inverse = s.invert();

        vec![bytes.to_vec(), s_inverse.to_bytes().to_vec()]
    }

    /// Recovers s inverse from the signature using the secp256r1 crate.
    ///
    /// # Arguments
    ///
    /// * `env` - The environment in which the hook is invoked.
    /// * `buf` - The buffer containing the signature.
    ///     - The signature is 64 bytes.
    ///
    /// The result is a single 32 byte vector containing s inverse.
    #[must_use]
    pub fn hook_r1_ecrecover(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
        assert_eq!(buf.len(), 64, "ecrecover input should have length 64");
        let sig: &[u8; 64] = buf.try_into().unwrap();
        let sig = p256Signature::from_slice(sig).unwrap();

        let (_, s) = sig.split_scalars();
        let s_inverse = s.invert();

        vec![s_inverse.to_bytes().to_vec()]
    }

    /// Recovers the public key from the signature and message hash using the k256 crate.
    ///
    /// # Arguments
    ///
    /// * `env` - The environment in which the hook is invoked.
    /// * `buf` - The buffer containing the signature and message hash.
    ///     - The signature is 65 bytes, the first 64 bytes are the signature and the last byte is the
    ///       recovery ID.
    ///     - The message hash is 32 bytes.
    ///
    /// The result is returned as a status and a pair of bytes, where the first 32 bytes are the X coordinate
    /// and the second 32 bytes are the Y coordinate of the decompressed point.
    ///
    /// A status of 0 indicates that the public key could not be recovered.
    ///
    /// WARNING: This function is used to recover the public key outside of the zkVM context. These
    /// values must be constrained by the zkVM for correctness.
    #[must_use]
    pub fn hook_ecrecover_v2(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
        assert_eq!(
            buf.len(),
            65 + 32,
            "ecrecover input should have length 65 + 32, this is a bug."
        );
        let (sig, msg_hash) = buf.split_at(65);
        let sig: &[u8; 65] = sig.try_into().unwrap();
        let msg_hash: &[u8; 32] = msg_hash.try_into().unwrap();

        let mut recovery_id = sig[64];
        let mut sig = Signature::from_slice(&sig[..64]).unwrap();

        if let Some(sig_normalized) = sig.normalize_s() {
            sig = sig_normalized;
            recovery_id ^= 1;
        };
        let recid = RecoveryId::from_byte(recovery_id)
            .expect("Computed recovery ID is invalid, this is a bug.");

        // Attempting to recvover the public key has failed, write a 0 to indicate to the caller.
        let Ok(recovered_key) = VerifyingKey::recover_from_prehash(&msg_hash[..], &sig, recid)
        else {
            return vec![vec![0]];
        };

        let bytes = recovered_key.to_sec1_bytes();

        let (_, s) = sig.split_scalars();
        let s_inverse = s.invert();

        vec![vec![1], bytes.to_vec(), s_inverse.to_bytes().to_vec()]
    }

    /// Checks if a compressed Edwards point can be decompressed.
    ///
    /// # Arguments
    /// * `env` - The environment in which the hook is invoked.
    /// * `buf` - The buffer containing the compressed Edwards point.
    ///    - The compressed Edwards point is 32 bytes.
    ///    - The high bit of the last byte is the sign bit.
    ///
    /// The result is either `0` if the point cannot be decompressed, or `1` if it can.
    ///
    /// WARNING: This function merely hints at the validity of the compressed point. These values must
    /// be constrained by the zkVM for correctness.
    #[must_use]
    pub fn hook_ed_decompress(_: HookEnv, buf: &[u8]) -> Vec<Vec<u8>> {
        let Ok(point) = sp1_curves::curve25519_dalek::CompressedEdwardsY::from_slice(buf) else {
            return vec![vec![0]];
        };

        if sp1_curves::edwards::ed25519::decompress(&point).is_some() {
            vec![vec![1]]
        } else {
            vec![vec![0]]
        }
    }
}

/// Pads a big uint to the given length in big endian.
fn pad_to_be(val: &BigUint, len: usize) -> Vec<u8> {
    // First take the byes in little endian
    let mut bytes = val.to_bytes_le();
    // Resize so we get the full padding correctly.
    bytes.resize(len, 0);
    // Convert back to big endian.
    bytes.reverse();

    bytes
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    pub fn registry_new_is_inhabited() {
        assert_ne!(HookRegistry::new().table.len(), 0);
        println!("{:?}", HookRegistry::new());
    }

    #[test]
    pub fn registry_empty_is_empty() {
        assert_eq!(HookRegistry::empty().table.len(), 0);
    }
}