sp1_core_executor/
record.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
use hashbrown::HashMap;
use itertools::{EitherOrBoth, Itertools};
use p3_field::{AbstractField, PrimeField};
use sp1_stark::{
    air::{MachineAir, PublicValues},
    MachineRecord, SP1CoreOpts, SplitOpts,
};
use std::{mem::take, sync::Arc};

use serde::{Deserialize, Serialize};

use super::{program::Program, Opcode};
use crate::{
    events::{
        add_sharded_byte_lookup_events, AluEvent, ByteLookupEvent, ByteRecord, CpuEvent, LookupId,
        MemoryInitializeFinalizeEvent, MemoryLocalEvent, MemoryRecordEnum, PrecompileEvent,
        PrecompileEvents, SyscallEvent,
    },
    syscalls::SyscallCode,
    CoreShape,
};

/// A record of the execution of a program.
///
/// The trace of the execution is represented as a list of "events" that occur every cycle.
#[derive(Default, Clone, Debug, Serialize, Deserialize)]
pub struct ExecutionRecord {
    /// The program.
    pub program: Arc<Program>,
    /// A trace of the CPU events which get emitted during execution.
    pub cpu_events: Vec<CpuEvent>,
    /// A trace of the ADD, and ADDI events.
    pub add_events: Vec<AluEvent>,
    /// A trace of the MUL events.
    pub mul_events: Vec<AluEvent>,
    /// A trace of the SUB events.
    pub sub_events: Vec<AluEvent>,
    /// A trace of the XOR, XORI, OR, ORI, AND, and ANDI events.
    pub bitwise_events: Vec<AluEvent>,
    /// A trace of the SLL and SLLI events.
    pub shift_left_events: Vec<AluEvent>,
    /// A trace of the SRL, SRLI, SRA, and SRAI events.
    pub shift_right_events: Vec<AluEvent>,
    /// A trace of the DIV, DIVU, REM, and REMU events.
    pub divrem_events: Vec<AluEvent>,
    /// A trace of the SLT, SLTI, SLTU, and SLTIU events.
    pub lt_events: Vec<AluEvent>,
    /// A trace of the byte lookups that are needed.
    pub byte_lookups: HashMap<u32, HashMap<ByteLookupEvent, usize>>,
    /// A trace of the precompile events.
    pub precompile_events: PrecompileEvents,
    /// A trace of the global memory initialize events.
    pub global_memory_initialize_events: Vec<MemoryInitializeFinalizeEvent>,
    /// A trace of the global memory finalize events.
    pub global_memory_finalize_events: Vec<MemoryInitializeFinalizeEvent>,
    /// A trace of all the shard's local memory events.
    pub cpu_local_memory_access: Vec<MemoryLocalEvent>,
    /// A trace of all the syscall events.
    pub syscall_events: Vec<SyscallEvent>,
    /// The public values.
    pub public_values: PublicValues<u32, u32>,
    /// The nonce lookup.
    pub nonce_lookup: HashMap<LookupId, u32>,
    /// The shape of the proof.
    pub shape: Option<CoreShape>,
}

impl ExecutionRecord {
    /// Create a new [`ExecutionRecord`].
    #[must_use]
    pub fn new(program: Arc<Program>) -> Self {
        Self { program, ..Default::default() }
    }

    /// Add a mul event to the execution record.
    pub fn add_mul_event(&mut self, mul_event: AluEvent) {
        self.mul_events.push(mul_event);
    }

    /// Add a lt event to the execution record.
    pub fn add_lt_event(&mut self, lt_event: AluEvent) {
        self.lt_events.push(lt_event);
    }

    /// Add a batch of alu events to the execution record.
    pub fn add_alu_events(&mut self, mut alu_events: HashMap<Opcode, Vec<AluEvent>>) {
        for (opcode, value) in &mut alu_events {
            match opcode {
                Opcode::ADD => {
                    self.add_events.append(value);
                }
                Opcode::MUL | Opcode::MULH | Opcode::MULHU | Opcode::MULHSU => {
                    self.mul_events.append(value);
                }
                Opcode::SUB => {
                    self.sub_events.append(value);
                }
                Opcode::XOR | Opcode::OR | Opcode::AND => {
                    self.bitwise_events.append(value);
                }
                Opcode::SLL => {
                    self.shift_left_events.append(value);
                }
                Opcode::SRL | Opcode::SRA => {
                    self.shift_right_events.append(value);
                }
                Opcode::SLT | Opcode::SLTU => {
                    self.lt_events.append(value);
                }
                _ => {
                    panic!("Invalid opcode: {opcode:?}");
                }
            }
        }
    }

    /// Take out events from the [`ExecutionRecord`] that should be deferred to a separate shard.
    ///
    /// Note: we usually defer events that would increase the recursion cost significantly if
    /// included in every shard.
    #[must_use]
    pub fn defer(&mut self) -> ExecutionRecord {
        let mut execution_record = ExecutionRecord::new(self.program.clone());
        execution_record.precompile_events = std::mem::take(&mut self.precompile_events);
        execution_record.global_memory_initialize_events =
            std::mem::take(&mut self.global_memory_initialize_events);
        execution_record.global_memory_finalize_events =
            std::mem::take(&mut self.global_memory_finalize_events);
        execution_record
    }

    /// Splits the deferred [`ExecutionRecord`] into multiple [`ExecutionRecord`]s, each which
    /// contain a "reasonable" number of deferred events.
    pub fn split(&mut self, last: bool, opts: SplitOpts) -> Vec<ExecutionRecord> {
        let mut shards = Vec::new();

        let precompile_events = take(&mut self.precompile_events);

        for (syscall_code, events) in precompile_events.into_iter() {
            let threshold = match syscall_code {
                SyscallCode::KECCAK_PERMUTE => opts.keccak,
                SyscallCode::SHA_EXTEND => opts.sha_extend,
                SyscallCode::SHA_COMPRESS => opts.sha_compress,
                _ => opts.deferred,
            };

            let chunks = events.chunks_exact(threshold);
            if last {
                let remainder = chunks.remainder().to_vec();
                if !remainder.is_empty() {
                    let mut execution_record = ExecutionRecord::new(self.program.clone());
                    execution_record.precompile_events.insert(syscall_code, remainder);
                    shards.push(execution_record);
                }
            } else {
                self.precompile_events.insert(syscall_code, chunks.remainder().to_vec());
            }
            let mut event_shards = chunks
                .map(|chunk| {
                    let mut execution_record = ExecutionRecord::new(self.program.clone());
                    execution_record.precompile_events.insert(syscall_code, chunk.to_vec());
                    execution_record
                })
                .collect::<Vec<_>>();
            shards.append(&mut event_shards);
        }

        if last {
            self.global_memory_initialize_events.sort_by_key(|event| event.addr);
            self.global_memory_finalize_events.sort_by_key(|event| event.addr);

            let mut init_addr_bits = [0; 32];
            let mut finalize_addr_bits = [0; 32];
            for mem_chunks in self
                .global_memory_initialize_events
                .chunks(opts.memory)
                .zip_longest(self.global_memory_finalize_events.chunks(opts.memory))
            {
                let (mem_init_chunk, mem_finalize_chunk) = match mem_chunks {
                    EitherOrBoth::Both(mem_init_chunk, mem_finalize_chunk) => {
                        (mem_init_chunk, mem_finalize_chunk)
                    }
                    EitherOrBoth::Left(mem_init_chunk) => (mem_init_chunk, [].as_slice()),
                    EitherOrBoth::Right(mem_finalize_chunk) => ([].as_slice(), mem_finalize_chunk),
                };
                let mut shard = ExecutionRecord::new(self.program.clone());
                shard.global_memory_initialize_events.extend_from_slice(mem_init_chunk);
                shard.public_values.previous_init_addr_bits = init_addr_bits;
                if let Some(last_event) = mem_init_chunk.last() {
                    let last_init_addr_bits = core::array::from_fn(|i| (last_event.addr >> i) & 1);
                    init_addr_bits = last_init_addr_bits;
                }
                shard.public_values.last_init_addr_bits = init_addr_bits;

                shard.global_memory_finalize_events.extend_from_slice(mem_finalize_chunk);
                shard.public_values.previous_finalize_addr_bits = finalize_addr_bits;
                if let Some(last_event) = mem_finalize_chunk.last() {
                    let last_finalize_addr_bits =
                        core::array::from_fn(|i| (last_event.addr >> i) & 1);
                    finalize_addr_bits = last_finalize_addr_bits;
                }
                shard.public_values.last_finalize_addr_bits = finalize_addr_bits;

                shards.push(shard);
            }
        }

        shards
    }

    /// Return the number of rows needed for a chip, according to the proof shape specified in the
    /// struct.
    pub fn fixed_log2_rows<F: PrimeField, A: MachineAir<F>>(&self, air: &A) -> Option<usize> {
        self.shape
            .as_ref()
            .map(|shape| {
                shape
                    .inner
                    .get(&air.name())
                    .unwrap_or_else(|| panic!("Chip {} not found in specified shape", air.name()))
            })
            .copied()
    }

    /// Determines whether the execution record contains CPU events.
    #[must_use]
    pub fn contains_cpu(&self) -> bool {
        !self.cpu_events.is_empty()
    }

    #[inline]
    /// Add a precompile event to the execution record.
    pub fn add_precompile_event(
        &mut self,
        syscall_code: SyscallCode,
        syscall_event: SyscallEvent,
        event: PrecompileEvent,
    ) {
        self.precompile_events.add_event(syscall_code, syscall_event, event);
    }

    /// Get all the precompile events for a syscall code.
    #[inline]
    #[must_use]
    pub fn get_precompile_events(
        &self,
        syscall_code: SyscallCode,
    ) -> &Vec<(SyscallEvent, PrecompileEvent)> {
        self.precompile_events.get_events(syscall_code).expect("Precompile events not found")
    }

    /// Get all the local memory events.
    #[inline]
    pub fn get_local_mem_events(&self) -> impl Iterator<Item = &MemoryLocalEvent> {
        let precompile_local_mem_events = self.precompile_events.get_local_mem_events();
        precompile_local_mem_events.chain(self.cpu_local_memory_access.iter())
    }
}

/// A memory access record.
#[derive(Debug, Copy, Clone, Default)]
pub struct MemoryAccessRecord {
    /// The memory access of the `a` register.
    pub a: Option<MemoryRecordEnum>,
    /// The memory access of the `b` register.
    pub b: Option<MemoryRecordEnum>,
    /// The memory access of the `c` register.
    pub c: Option<MemoryRecordEnum>,
    /// The memory access of the `memory` register.
    pub memory: Option<MemoryRecordEnum>,
}

impl MachineRecord for ExecutionRecord {
    type Config = SP1CoreOpts;

    fn stats(&self) -> HashMap<String, usize> {
        let mut stats = HashMap::new();
        stats.insert("cpu_events".to_string(), self.cpu_events.len());
        stats.insert("add_events".to_string(), self.add_events.len());
        stats.insert("mul_events".to_string(), self.mul_events.len());
        stats.insert("sub_events".to_string(), self.sub_events.len());
        stats.insert("bitwise_events".to_string(), self.bitwise_events.len());
        stats.insert("shift_left_events".to_string(), self.shift_left_events.len());
        stats.insert("shift_right_events".to_string(), self.shift_right_events.len());
        stats.insert("divrem_events".to_string(), self.divrem_events.len());
        stats.insert("lt_events".to_string(), self.lt_events.len());

        for (syscall_code, events) in self.precompile_events.iter() {
            stats.insert(format!("syscall {syscall_code:?}"), events.len());
        }

        stats.insert(
            "global_memory_initialize_events".to_string(),
            self.global_memory_initialize_events.len(),
        );
        stats.insert(
            "global_memory_finalize_events".to_string(),
            self.global_memory_finalize_events.len(),
        );
        stats.insert("local_memory_access_events".to_string(), self.cpu_local_memory_access.len());
        if !self.cpu_events.is_empty() {
            let shard = self.cpu_events[0].shard;
            stats.insert(
                "byte_lookups".to_string(),
                self.byte_lookups.get(&shard).map_or(0, hashbrown::HashMap::len),
            );
        }
        // Filter out the empty events.
        stats.retain(|_, v| *v != 0);
        stats
    }

    fn append(&mut self, other: &mut ExecutionRecord) {
        self.cpu_events.append(&mut other.cpu_events);
        self.add_events.append(&mut other.add_events);
        self.sub_events.append(&mut other.sub_events);
        self.mul_events.append(&mut other.mul_events);
        self.bitwise_events.append(&mut other.bitwise_events);
        self.shift_left_events.append(&mut other.shift_left_events);
        self.shift_right_events.append(&mut other.shift_right_events);
        self.divrem_events.append(&mut other.divrem_events);
        self.lt_events.append(&mut other.lt_events);
        self.syscall_events.append(&mut other.syscall_events);

        self.precompile_events.append(&mut other.precompile_events);

        if self.byte_lookups.is_empty() {
            self.byte_lookups = std::mem::take(&mut other.byte_lookups);
        } else {
            self.add_sharded_byte_lookup_events(vec![&other.byte_lookups]);
        }

        self.global_memory_initialize_events.append(&mut other.global_memory_initialize_events);
        self.global_memory_finalize_events.append(&mut other.global_memory_finalize_events);
        self.cpu_local_memory_access.append(&mut other.cpu_local_memory_access);
    }

    fn register_nonces(&mut self, _opts: &Self::Config) {
        self.add_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, i as u32);
        });

        self.sub_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, (self.add_events.len() + i) as u32);
        });

        self.mul_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, i as u32);
        });

        self.bitwise_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, i as u32);
        });

        self.shift_left_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, i as u32);
        });

        self.shift_right_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, i as u32);
        });

        self.divrem_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, i as u32);
        });

        self.lt_events.iter().enumerate().for_each(|(i, event)| {
            self.nonce_lookup.insert(event.lookup_id, i as u32);
        });
    }

    /// Retrieves the public values.  This method is needed for the `MachineRecord` trait, since
    fn public_values<F: AbstractField>(&self) -> Vec<F> {
        self.public_values.to_vec()
    }
}

impl ByteRecord for ExecutionRecord {
    fn add_byte_lookup_event(&mut self, blu_event: ByteLookupEvent) {
        *self.byte_lookups.entry(blu_event.shard).or_default().entry(blu_event).or_insert(0) += 1;
    }

    #[inline]
    fn add_sharded_byte_lookup_events(
        &mut self,
        new_events: Vec<&HashMap<u32, HashMap<ByteLookupEvent, usize>>>,
    ) {
        add_sharded_byte_lookup_events(&mut self.byte_lookups, new_events);
    }
}