pub struct OverlayedChanges { /* private fields */ }
Expand description

The set of changes that are overlaid onto the backend.

It allows changes to be modified using nestable transactions.

Implementations§

Whether no changes are contained in the top nor in any of the child changes.

Ask to collect/not to collect extrinsics indices where key(s) has been changed.

Returns a double-Option: None if the key is unknown (i.e. and the query should be referred to the backend); Some(None) if the key has been deleted. Some(Some(…)) for a key whose value has been set.

Examples found in repository?
src/basic.rs (line 164)
163
164
165
	fn storage(&self, key: &[u8]) -> Option<StorageValue> {
		self.overlay.storage(key).and_then(|v| v.map(|v| v.to_vec()))
	}
More examples
Hide additional examples
src/overlayed_changes/mod.rs (line 567)
564
565
566
567
568
569
570
571
572
573
	fn extrinsic_index(&self) -> Option<u32> {
		match self.collect_extrinsics {
			true => Some(
				self.storage(EXTRINSIC_INDEX)
					.and_then(|idx| idx.and_then(|idx| Decode::decode(&mut &*idx).ok()))
					.unwrap_or(NO_EXTRINSIC_INDEX),
			),
			false => None,
		}
	}
src/ext.rs (line 187)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
	fn storage(&self, key: &[u8]) -> Option<StorageValue> {
		let _guard = guard();
		let result = self
			.overlay
			.storage(key)
			.map(|x| x.map(|x| x.to_vec()))
			.unwrap_or_else(|| self.backend.storage(key).expect(EXT_NOT_ALLOWED_TO_FAIL));

		// NOTE: be careful about touching the key names – used outside substrate!
		trace!(
			target: "state",
			method = "Get",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			result = ?result.as_ref().map(HexDisplay::from),
			result_encoded = %HexDisplay::from(
				&result
					.as_ref()
					.map(|v| EncodeOpaqueValue(v.clone()))
					.encode()
			),
		);

		result
	}

	fn storage_hash(&self, key: &[u8]) -> Option<Vec<u8>> {
		let _guard = guard();
		let result = self
			.overlay
			.storage(key)
			.map(|x| x.map(|x| H::hash(x)))
			.unwrap_or_else(|| self.backend.storage_hash(key).expect(EXT_NOT_ALLOWED_TO_FAIL));

		trace!(
			target: "state",
			method = "Hash",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			?result,
		);
		result.map(|r| r.encode())
	}

	fn child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageValue> {
		let _guard = guard();
		let result = self
			.overlay
			.child_storage(child_info, key)
			.map(|x| x.map(|x| x.to_vec()))
			.unwrap_or_else(|| {
				self.backend.child_storage(child_info, key).expect(EXT_NOT_ALLOWED_TO_FAIL)
			});

		trace!(
			target: "state",
			method = "ChildGet",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			result = ?result.as_ref().map(HexDisplay::from)
		);

		result
	}

	fn child_storage_hash(&self, child_info: &ChildInfo, key: &[u8]) -> Option<Vec<u8>> {
		let _guard = guard();
		let result = self
			.overlay
			.child_storage(child_info, key)
			.map(|x| x.map(|x| H::hash(x)))
			.unwrap_or_else(|| {
				self.backend.child_storage_hash(child_info, key).expect(EXT_NOT_ALLOWED_TO_FAIL)
			});

		trace!(
			target: "state",
			method = "ChildHash",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			?result,
		);

		result.map(|r| r.encode())
	}

	fn exists_storage(&self, key: &[u8]) -> bool {
		let _guard = guard();
		let result = match self.overlay.storage(key) {
			Some(x) => x.is_some(),
			_ => self.backend.exists_storage(key).expect(EXT_NOT_ALLOWED_TO_FAIL),
		};

		trace!(
			target: "state",
			method = "Exists",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			%result,
		);

		result
	}

	fn exists_child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> bool {
		let _guard = guard();

		let result = match self.overlay.child_storage(child_info, key) {
			Some(x) => x.is_some(),
			_ => self
				.backend
				.exists_child_storage(child_info, key)
				.expect(EXT_NOT_ALLOWED_TO_FAIL),
		};

		trace!(
			target: "state",
			method = "ChildExists",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			%result,
		);
		result
	}

	fn next_storage_key(&self, key: &[u8]) -> Option<StorageKey> {
		let mut next_backend_key =
			self.backend.next_storage_key(key).expect(EXT_NOT_ALLOWED_TO_FAIL);
		let mut overlay_changes = self.overlay.iter_after(key).peekable();

		match (&next_backend_key, overlay_changes.peek()) {
			(_, None) => next_backend_key,
			(Some(_), Some(_)) => {
				for overlay_key in overlay_changes {
					let cmp = next_backend_key.as_deref().map(|v| v.cmp(overlay_key.0));

					// If `backend_key` is less than the `overlay_key`, we found out next key.
					if cmp == Some(Ordering::Less) {
						return next_backend_key
					} else if overlay_key.1.value().is_some() {
						// If there exists a value for the `overlay_key` in the overlay
						// (aka the key is still valid), it means we have found our next key.
						return Some(overlay_key.0.to_vec())
					} else if cmp == Some(Ordering::Equal) {
						// If the `backend_key` and `overlay_key` are equal, it means that we need
						// to search for the next backend key, because the overlay has overwritten
						// this key.
						next_backend_key = self
							.backend
							.next_storage_key(overlay_key.0)
							.expect(EXT_NOT_ALLOWED_TO_FAIL);
					}
				}

				next_backend_key
			},
			(None, Some(_)) => {
				// Find the next overlay key that has a value attached.
				overlay_changes.find_map(|k| k.1.value().as_ref().map(|_| k.0.to_vec()))
			},
		}
	}

	fn next_child_storage_key(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageKey> {
		let mut next_backend_key = self
			.backend
			.next_child_storage_key(child_info, key)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		let mut overlay_changes =
			self.overlay.child_iter_after(child_info.storage_key(), key).peekable();

		match (&next_backend_key, overlay_changes.peek()) {
			(_, None) => next_backend_key,
			(Some(_), Some(_)) => {
				for overlay_key in overlay_changes {
					let cmp = next_backend_key.as_deref().map(|v| v.cmp(overlay_key.0));

					// If `backend_key` is less than the `overlay_key`, we found out next key.
					if cmp == Some(Ordering::Less) {
						return next_backend_key
					} else if overlay_key.1.value().is_some() {
						// If there exists a value for the `overlay_key` in the overlay
						// (aka the key is still valid), it means we have found our next key.
						return Some(overlay_key.0.to_vec())
					} else if cmp == Some(Ordering::Equal) {
						// If the `backend_key` and `overlay_key` are equal, it means that we need
						// to search for the next backend key, because the overlay has overwritten
						// this key.
						next_backend_key = self
							.backend
							.next_child_storage_key(child_info, overlay_key.0)
							.expect(EXT_NOT_ALLOWED_TO_FAIL);
					}
				}

				next_backend_key
			},
			(None, Some(_)) => {
				// Find the next overlay key that has a value attached.
				overlay_changes.find_map(|k| k.1.value().as_ref().map(|_| k.0.to_vec()))
			},
		}
	}

	fn place_storage(&mut self, key: StorageKey, value: Option<StorageValue>) {
		let _guard = guard();
		if is_child_storage_key(&key) {
			warn!(target: "trie", "Refuse to directly set child storage key");
			return
		}

		// NOTE: be careful about touching the key names – used outside substrate!
		trace!(
			target: "state",
			method = "Put",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			value = ?value.as_ref().map(HexDisplay::from),
			value_encoded = %HexDisplay::from(
				&value
					.as_ref()
					.map(|v| EncodeOpaqueValue(v.clone()))
					.encode()
			),
		);

		self.mark_dirty();
		self.overlay.set_storage(key, value);
	}

	fn place_child_storage(
		&mut self,
		child_info: &ChildInfo,
		key: StorageKey,
		value: Option<StorageValue>,
	) {
		trace!(
			target: "state",
			method = "ChildPut",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			value = ?value.as_ref().map(HexDisplay::from),
		);
		let _guard = guard();

		self.mark_dirty();
		self.overlay.set_child_storage(child_info, key, value);
	}

	fn kill_child_storage(
		&mut self,
		child_info: &ChildInfo,
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ChildKill",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
		);
		let _guard = guard();
		self.mark_dirty();
		let overlay = self.overlay.clear_child_storage(child_info);
		let (maybe_cursor, backend, loops) =
			self.limit_remove_from_backend(Some(child_info), None, maybe_limit, maybe_cursor);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn clear_prefix(
		&mut self,
		prefix: &[u8],
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ClearPrefix",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			prefix = %HexDisplay::from(&prefix),
		);
		let _guard = guard();

		if sp_core::storage::well_known_keys::starts_with_child_storage_key(prefix) {
			warn!(
				target: "trie",
				"Refuse to directly clear prefix that is part or contains of child storage key",
			);
			return MultiRemovalResults { maybe_cursor: None, backend: 0, unique: 0, loops: 0 }
		}

		self.mark_dirty();
		let overlay = self.overlay.clear_prefix(prefix);
		let (maybe_cursor, backend, loops) =
			self.limit_remove_from_backend(None, Some(prefix), maybe_limit, maybe_cursor);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn clear_child_prefix(
		&mut self,
		child_info: &ChildInfo,
		prefix: &[u8],
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ChildClearPrefix",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			prefix = %HexDisplay::from(&prefix),
		);
		let _guard = guard();

		self.mark_dirty();
		let overlay = self.overlay.clear_child_prefix(child_info, prefix);
		let (maybe_cursor, backend, loops) = self.limit_remove_from_backend(
			Some(child_info),
			Some(prefix),
			maybe_limit,
			maybe_cursor,
		);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn storage_append(&mut self, key: Vec<u8>, value: Vec<u8>) {
		trace!(
			target: "state",
			method = "Append",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			value = %HexDisplay::from(&value),
		);

		let _guard = guard();
		self.mark_dirty();

		let backend = &mut self.backend;
		let current_value = self.overlay.value_mut_or_insert_with(&key, || {
			backend.storage(&key).expect(EXT_NOT_ALLOWED_TO_FAIL).unwrap_or_default()
		});
		StorageAppend::new(current_value).append(value);
	}

	fn storage_root(&mut self, state_version: StateVersion) -> Vec<u8> {
		let _guard = guard();
		if let Some(ref root) = self.storage_transaction_cache.transaction_storage_root {
			trace!(
				target: "state",
				method = "StorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			return root.encode()
		}

		let root =
			self.overlay
				.storage_root(self.backend, self.storage_transaction_cache, state_version);
		trace!(
			target: "state",
			method = "StorageRoot",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			storage_root = %HexDisplay::from(&root.as_ref()),
			cached = false,
		);
		root.encode()
	}

	fn child_storage_root(
		&mut self,
		child_info: &ChildInfo,
		state_version: StateVersion,
	) -> Vec<u8> {
		let _guard = guard();
		let storage_key = child_info.storage_key();
		let prefixed_storage_key = child_info.prefixed_storage_key();
		if self.storage_transaction_cache.transaction_storage_root.is_some() {
			let root = self
				.storage(prefixed_storage_key.as_slice())
				.and_then(|k| Decode::decode(&mut &k[..]).ok())
				// V1 is equivalent to V0 on empty root.
				.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);
			trace!(
				target: "state",
				method = "ChildStorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				child_info = %HexDisplay::from(&storage_key),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			root.encode()
		} else {
			let root = if let Some((changes, info)) = self.overlay.child_changes(storage_key) {
				let delta = changes.map(|(k, v)| (k.as_ref(), v.value().map(AsRef::as_ref)));
				Some(self.backend.child_storage_root(info, delta, state_version))
			} else {
				None
			};

			if let Some((root, is_empty, _)) = root {
				let root = root.encode();
				// We store update in the overlay in order to be able to use
				// 'self.storage_transaction' cache. This is brittle as it rely on Ext only querying
				// the trie backend for storage root.
				// A better design would be to manage 'child_storage_transaction' in a
				// similar way as 'storage_transaction' but for each child trie.
				if is_empty {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), None);
				} else {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), Some(root.clone()));
				}

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root
			} else {
				// empty overlay
				let root = self
					.storage(prefixed_storage_key.as_slice())
					.and_then(|k| Decode::decode(&mut &k[..]).ok())
					// V1 is equivalent to V0 on empty root.
					.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root.encode()
			}
		}
	}

	fn storage_index_transaction(&mut self, index: u32, hash: &[u8], size: u32) {
		trace!(
			target: "state",
			method = "IndexTransaction",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
			%size,
		);

		self.overlay.add_transaction_index(IndexOperation::Insert {
			extrinsic: index,
			hash: hash.to_vec(),
			size,
		});
	}

	/// Renew existing piece of data storage.
	fn storage_renew_transaction_index(&mut self, index: u32, hash: &[u8]) {
		trace!(
			target: "state",
			method = "RenewTransactionIndex",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
		);

		self.overlay
			.add_transaction_index(IndexOperation::Renew { extrinsic: index, hash: hash.to_vec() });
	}

	fn storage_start_transaction(&mut self) {
		self.overlay.start_transaction()
	}

	fn storage_rollback_transaction(&mut self) -> Result<(), ()> {
		self.mark_dirty();
		self.overlay.rollback_transaction().map_err(|_| ())
	}

	fn storage_commit_transaction(&mut self) -> Result<(), ()> {
		self.overlay.commit_transaction().map_err(|_| ())
	}

	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn commit(&mut self) {
		// Bench always use latest state.
		let state_version = StateVersion::default();
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.commit_transaction().expect(BENCHMARKING_FN);
		}
		let changes = self
			.overlay
			.drain_storage_changes(self.backend, self.storage_transaction_cache, state_version)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend
			.commit(
				changes.transaction_storage_root,
				changes.transaction,
				changes.main_storage_changes,
				changes.child_storage_changes,
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn read_write_count(&self) -> (u32, u32, u32, u32) {
		self.backend.read_write_count()
	}

	fn reset_read_write_count(&mut self) {
		self.backend.reset_read_write_count()
	}

	fn get_whitelist(&self) -> Vec<TrackedStorageKey> {
		self.backend.get_whitelist()
	}

	fn set_whitelist(&mut self, new: Vec<TrackedStorageKey>) {
		self.backend.set_whitelist(new)
	}

	fn proof_size(&self) -> Option<u32> {
		self.backend.proof_size()
	}

	fn get_read_and_written_keys(&self) -> Vec<(Vec<u8>, u32, u32, bool)> {
		self.backend.get_read_and_written_keys()
	}
}

impl<'a, H, B> Ext<'a, H, B>
where
	H: Hasher,
	H::Out: Ord + 'static + codec::Codec,
	B: Backend<H>,
{
	fn limit_remove_from_backend(
		&mut self,
		maybe_child: Option<&ChildInfo>,
		maybe_prefix: Option<&[u8]>,
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> (Option<Vec<u8>>, u32, u32) {
		let mut delete_count: u32 = 0;
		let mut loop_count: u32 = 0;
		let mut maybe_next_key = None;
		self.backend
			.apply_to_keys_while(maybe_child, maybe_prefix, maybe_cursor, |key| {
				if maybe_limit.map_or(false, |limit| loop_count == limit) {
					maybe_next_key = Some(key.to_vec());
					return false
				}
				let overlay = match maybe_child {
					Some(child_info) => self.overlay.child_storage(child_info, key),
					None => self.overlay.storage(key),
				};
				if !matches!(overlay, Some(None)) {
					// not pending deletion from the backend - delete it.
					if let Some(child_info) = maybe_child {
						self.overlay.set_child_storage(child_info, key.to_vec(), None);
					} else {
						self.overlay.set_storage(key.to_vec(), None);
					}
					delete_count = delete_count.saturating_add(1);
				}
				loop_count = loop_count.saturating_add(1);
				true
			});
		(maybe_next_key, delete_count, loop_count)
	}

Returns mutable reference to current value. If there is no value in the overlay, the given callback is used to initiate the value. Warning this function registers a change, so the mutable reference MUST be modified.

Can be rolled back or committed when called inside a transaction.

Examples found in repository?
src/basic.rs (line 248)
247
248
249
250
	fn storage_append(&mut self, key: Vec<u8>, value: Vec<u8>) {
		let current_value = self.overlay.value_mut_or_insert_with(&key, || Default::default());
		crate::ext::StorageAppend::new(current_value).append(value);
	}
More examples
Hide additional examples
src/ext.rs (lines 525-527)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
	fn storage_append(&mut self, key: Vec<u8>, value: Vec<u8>) {
		trace!(
			target: "state",
			method = "Append",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			value = %HexDisplay::from(&value),
		);

		let _guard = guard();
		self.mark_dirty();

		let backend = &mut self.backend;
		let current_value = self.overlay.value_mut_or_insert_with(&key, || {
			backend.storage(&key).expect(EXT_NOT_ALLOWED_TO_FAIL).unwrap_or_default()
		});
		StorageAppend::new(current_value).append(value);
	}

Returns a double-Option: None if the key is unknown (i.e. and the query should be referred to the backend); Some(None) if the key has been deleted. Some(Some(…)) for a key whose value has been set.

Examples found in repository?
src/basic.rs (line 172)
171
172
173
	fn child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageValue> {
		self.overlay.child_storage(child_info, key).and_then(|v| v.map(|v| v.to_vec()))
	}
More examples
Hide additional examples
src/ext.rs (line 231)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
	fn child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageValue> {
		let _guard = guard();
		let result = self
			.overlay
			.child_storage(child_info, key)
			.map(|x| x.map(|x| x.to_vec()))
			.unwrap_or_else(|| {
				self.backend.child_storage(child_info, key).expect(EXT_NOT_ALLOWED_TO_FAIL)
			});

		trace!(
			target: "state",
			method = "ChildGet",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			result = ?result.as_ref().map(HexDisplay::from)
		);

		result
	}

	fn child_storage_hash(&self, child_info: &ChildInfo, key: &[u8]) -> Option<Vec<u8>> {
		let _guard = guard();
		let result = self
			.overlay
			.child_storage(child_info, key)
			.map(|x| x.map(|x| H::hash(x)))
			.unwrap_or_else(|| {
				self.backend.child_storage_hash(child_info, key).expect(EXT_NOT_ALLOWED_TO_FAIL)
			});

		trace!(
			target: "state",
			method = "ChildHash",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			?result,
		);

		result.map(|r| r.encode())
	}

	fn exists_storage(&self, key: &[u8]) -> bool {
		let _guard = guard();
		let result = match self.overlay.storage(key) {
			Some(x) => x.is_some(),
			_ => self.backend.exists_storage(key).expect(EXT_NOT_ALLOWED_TO_FAIL),
		};

		trace!(
			target: "state",
			method = "Exists",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			%result,
		);

		result
	}

	fn exists_child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> bool {
		let _guard = guard();

		let result = match self.overlay.child_storage(child_info, key) {
			Some(x) => x.is_some(),
			_ => self
				.backend
				.exists_child_storage(child_info, key)
				.expect(EXT_NOT_ALLOWED_TO_FAIL),
		};

		trace!(
			target: "state",
			method = "ChildExists",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			%result,
		);
		result
	}

	fn next_storage_key(&self, key: &[u8]) -> Option<StorageKey> {
		let mut next_backend_key =
			self.backend.next_storage_key(key).expect(EXT_NOT_ALLOWED_TO_FAIL);
		let mut overlay_changes = self.overlay.iter_after(key).peekable();

		match (&next_backend_key, overlay_changes.peek()) {
			(_, None) => next_backend_key,
			(Some(_), Some(_)) => {
				for overlay_key in overlay_changes {
					let cmp = next_backend_key.as_deref().map(|v| v.cmp(overlay_key.0));

					// If `backend_key` is less than the `overlay_key`, we found out next key.
					if cmp == Some(Ordering::Less) {
						return next_backend_key
					} else if overlay_key.1.value().is_some() {
						// If there exists a value for the `overlay_key` in the overlay
						// (aka the key is still valid), it means we have found our next key.
						return Some(overlay_key.0.to_vec())
					} else if cmp == Some(Ordering::Equal) {
						// If the `backend_key` and `overlay_key` are equal, it means that we need
						// to search for the next backend key, because the overlay has overwritten
						// this key.
						next_backend_key = self
							.backend
							.next_storage_key(overlay_key.0)
							.expect(EXT_NOT_ALLOWED_TO_FAIL);
					}
				}

				next_backend_key
			},
			(None, Some(_)) => {
				// Find the next overlay key that has a value attached.
				overlay_changes.find_map(|k| k.1.value().as_ref().map(|_| k.0.to_vec()))
			},
		}
	}

	fn next_child_storage_key(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageKey> {
		let mut next_backend_key = self
			.backend
			.next_child_storage_key(child_info, key)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		let mut overlay_changes =
			self.overlay.child_iter_after(child_info.storage_key(), key).peekable();

		match (&next_backend_key, overlay_changes.peek()) {
			(_, None) => next_backend_key,
			(Some(_), Some(_)) => {
				for overlay_key in overlay_changes {
					let cmp = next_backend_key.as_deref().map(|v| v.cmp(overlay_key.0));

					// If `backend_key` is less than the `overlay_key`, we found out next key.
					if cmp == Some(Ordering::Less) {
						return next_backend_key
					} else if overlay_key.1.value().is_some() {
						// If there exists a value for the `overlay_key` in the overlay
						// (aka the key is still valid), it means we have found our next key.
						return Some(overlay_key.0.to_vec())
					} else if cmp == Some(Ordering::Equal) {
						// If the `backend_key` and `overlay_key` are equal, it means that we need
						// to search for the next backend key, because the overlay has overwritten
						// this key.
						next_backend_key = self
							.backend
							.next_child_storage_key(child_info, overlay_key.0)
							.expect(EXT_NOT_ALLOWED_TO_FAIL);
					}
				}

				next_backend_key
			},
			(None, Some(_)) => {
				// Find the next overlay key that has a value attached.
				overlay_changes.find_map(|k| k.1.value().as_ref().map(|_| k.0.to_vec()))
			},
		}
	}

	fn place_storage(&mut self, key: StorageKey, value: Option<StorageValue>) {
		let _guard = guard();
		if is_child_storage_key(&key) {
			warn!(target: "trie", "Refuse to directly set child storage key");
			return
		}

		// NOTE: be careful about touching the key names – used outside substrate!
		trace!(
			target: "state",
			method = "Put",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			value = ?value.as_ref().map(HexDisplay::from),
			value_encoded = %HexDisplay::from(
				&value
					.as_ref()
					.map(|v| EncodeOpaqueValue(v.clone()))
					.encode()
			),
		);

		self.mark_dirty();
		self.overlay.set_storage(key, value);
	}

	fn place_child_storage(
		&mut self,
		child_info: &ChildInfo,
		key: StorageKey,
		value: Option<StorageValue>,
	) {
		trace!(
			target: "state",
			method = "ChildPut",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			value = ?value.as_ref().map(HexDisplay::from),
		);
		let _guard = guard();

		self.mark_dirty();
		self.overlay.set_child_storage(child_info, key, value);
	}

	fn kill_child_storage(
		&mut self,
		child_info: &ChildInfo,
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ChildKill",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
		);
		let _guard = guard();
		self.mark_dirty();
		let overlay = self.overlay.clear_child_storage(child_info);
		let (maybe_cursor, backend, loops) =
			self.limit_remove_from_backend(Some(child_info), None, maybe_limit, maybe_cursor);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn clear_prefix(
		&mut self,
		prefix: &[u8],
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ClearPrefix",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			prefix = %HexDisplay::from(&prefix),
		);
		let _guard = guard();

		if sp_core::storage::well_known_keys::starts_with_child_storage_key(prefix) {
			warn!(
				target: "trie",
				"Refuse to directly clear prefix that is part or contains of child storage key",
			);
			return MultiRemovalResults { maybe_cursor: None, backend: 0, unique: 0, loops: 0 }
		}

		self.mark_dirty();
		let overlay = self.overlay.clear_prefix(prefix);
		let (maybe_cursor, backend, loops) =
			self.limit_remove_from_backend(None, Some(prefix), maybe_limit, maybe_cursor);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn clear_child_prefix(
		&mut self,
		child_info: &ChildInfo,
		prefix: &[u8],
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ChildClearPrefix",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			prefix = %HexDisplay::from(&prefix),
		);
		let _guard = guard();

		self.mark_dirty();
		let overlay = self.overlay.clear_child_prefix(child_info, prefix);
		let (maybe_cursor, backend, loops) = self.limit_remove_from_backend(
			Some(child_info),
			Some(prefix),
			maybe_limit,
			maybe_cursor,
		);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn storage_append(&mut self, key: Vec<u8>, value: Vec<u8>) {
		trace!(
			target: "state",
			method = "Append",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			value = %HexDisplay::from(&value),
		);

		let _guard = guard();
		self.mark_dirty();

		let backend = &mut self.backend;
		let current_value = self.overlay.value_mut_or_insert_with(&key, || {
			backend.storage(&key).expect(EXT_NOT_ALLOWED_TO_FAIL).unwrap_or_default()
		});
		StorageAppend::new(current_value).append(value);
	}

	fn storage_root(&mut self, state_version: StateVersion) -> Vec<u8> {
		let _guard = guard();
		if let Some(ref root) = self.storage_transaction_cache.transaction_storage_root {
			trace!(
				target: "state",
				method = "StorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			return root.encode()
		}

		let root =
			self.overlay
				.storage_root(self.backend, self.storage_transaction_cache, state_version);
		trace!(
			target: "state",
			method = "StorageRoot",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			storage_root = %HexDisplay::from(&root.as_ref()),
			cached = false,
		);
		root.encode()
	}

	fn child_storage_root(
		&mut self,
		child_info: &ChildInfo,
		state_version: StateVersion,
	) -> Vec<u8> {
		let _guard = guard();
		let storage_key = child_info.storage_key();
		let prefixed_storage_key = child_info.prefixed_storage_key();
		if self.storage_transaction_cache.transaction_storage_root.is_some() {
			let root = self
				.storage(prefixed_storage_key.as_slice())
				.and_then(|k| Decode::decode(&mut &k[..]).ok())
				// V1 is equivalent to V0 on empty root.
				.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);
			trace!(
				target: "state",
				method = "ChildStorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				child_info = %HexDisplay::from(&storage_key),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			root.encode()
		} else {
			let root = if let Some((changes, info)) = self.overlay.child_changes(storage_key) {
				let delta = changes.map(|(k, v)| (k.as_ref(), v.value().map(AsRef::as_ref)));
				Some(self.backend.child_storage_root(info, delta, state_version))
			} else {
				None
			};

			if let Some((root, is_empty, _)) = root {
				let root = root.encode();
				// We store update in the overlay in order to be able to use
				// 'self.storage_transaction' cache. This is brittle as it rely on Ext only querying
				// the trie backend for storage root.
				// A better design would be to manage 'child_storage_transaction' in a
				// similar way as 'storage_transaction' but for each child trie.
				if is_empty {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), None);
				} else {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), Some(root.clone()));
				}

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root
			} else {
				// empty overlay
				let root = self
					.storage(prefixed_storage_key.as_slice())
					.and_then(|k| Decode::decode(&mut &k[..]).ok())
					// V1 is equivalent to V0 on empty root.
					.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root.encode()
			}
		}
	}

	fn storage_index_transaction(&mut self, index: u32, hash: &[u8], size: u32) {
		trace!(
			target: "state",
			method = "IndexTransaction",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
			%size,
		);

		self.overlay.add_transaction_index(IndexOperation::Insert {
			extrinsic: index,
			hash: hash.to_vec(),
			size,
		});
	}

	/// Renew existing piece of data storage.
	fn storage_renew_transaction_index(&mut self, index: u32, hash: &[u8]) {
		trace!(
			target: "state",
			method = "RenewTransactionIndex",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
		);

		self.overlay
			.add_transaction_index(IndexOperation::Renew { extrinsic: index, hash: hash.to_vec() });
	}

	fn storage_start_transaction(&mut self) {
		self.overlay.start_transaction()
	}

	fn storage_rollback_transaction(&mut self) -> Result<(), ()> {
		self.mark_dirty();
		self.overlay.rollback_transaction().map_err(|_| ())
	}

	fn storage_commit_transaction(&mut self) -> Result<(), ()> {
		self.overlay.commit_transaction().map_err(|_| ())
	}

	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn commit(&mut self) {
		// Bench always use latest state.
		let state_version = StateVersion::default();
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.commit_transaction().expect(BENCHMARKING_FN);
		}
		let changes = self
			.overlay
			.drain_storage_changes(self.backend, self.storage_transaction_cache, state_version)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend
			.commit(
				changes.transaction_storage_root,
				changes.transaction,
				changes.main_storage_changes,
				changes.child_storage_changes,
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn read_write_count(&self) -> (u32, u32, u32, u32) {
		self.backend.read_write_count()
	}

	fn reset_read_write_count(&mut self) {
		self.backend.reset_read_write_count()
	}

	fn get_whitelist(&self) -> Vec<TrackedStorageKey> {
		self.backend.get_whitelist()
	}

	fn set_whitelist(&mut self, new: Vec<TrackedStorageKey>) {
		self.backend.set_whitelist(new)
	}

	fn proof_size(&self) -> Option<u32> {
		self.backend.proof_size()
	}

	fn get_read_and_written_keys(&self) -> Vec<(Vec<u8>, u32, u32, bool)> {
		self.backend.get_read_and_written_keys()
	}
}

impl<'a, H, B> Ext<'a, H, B>
where
	H: Hasher,
	H::Out: Ord + 'static + codec::Codec,
	B: Backend<H>,
{
	fn limit_remove_from_backend(
		&mut self,
		maybe_child: Option<&ChildInfo>,
		maybe_prefix: Option<&[u8]>,
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> (Option<Vec<u8>>, u32, u32) {
		let mut delete_count: u32 = 0;
		let mut loop_count: u32 = 0;
		let mut maybe_next_key = None;
		self.backend
			.apply_to_keys_while(maybe_child, maybe_prefix, maybe_cursor, |key| {
				if maybe_limit.map_or(false, |limit| loop_count == limit) {
					maybe_next_key = Some(key.to_vec());
					return false
				}
				let overlay = match maybe_child {
					Some(child_info) => self.overlay.child_storage(child_info, key),
					None => self.overlay.storage(key),
				};
				if !matches!(overlay, Some(None)) {
					// not pending deletion from the backend - delete it.
					if let Some(child_info) = maybe_child {
						self.overlay.set_child_storage(child_info, key.to_vec(), None);
					} else {
						self.overlay.set_storage(key.to_vec(), None);
					}
					delete_count = delete_count.saturating_add(1);
				}
				loop_count = loop_count.saturating_add(1);
				true
			});
		(maybe_next_key, delete_count, loop_count)
	}

Set a new value for the specified key.

Can be rolled back or committed when called inside a transaction.

Examples found in repository?
src/basic.rs (line 59)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
	pub fn insert(&mut self, k: StorageKey, v: StorageValue) {
		self.overlay.set_storage(k, Some(v));
	}

	/// Consume self and returns inner storages
	pub fn into_storages(self) -> Storage {
		Storage {
			top: self
				.overlay
				.changes()
				.filter_map(|(k, v)| v.value().map(|v| (k.to_vec(), v.to_vec())))
				.collect(),
			children_default: self
				.overlay
				.children()
				.map(|(iter, i)| {
					(
						i.storage_key().to_vec(),
						sp_core::storage::StorageChild {
							data: iter
								.filter_map(|(k, v)| v.value().map(|v| (k.to_vec(), v.to_vec())))
								.collect(),
							child_info: i.clone(),
						},
					)
				})
				.collect(),
		}
	}

	/// Execute the given closure `f` with the externalities set and initialized with `storage`.
	///
	/// Returns the result of the closure and updates `storage` with all changes.
	pub fn execute_with_storage<R>(
		storage: &mut sp_core::storage::Storage,
		f: impl FnOnce() -> R,
	) -> R {
		let mut ext = Self::new(std::mem::take(storage));

		let r = ext.execute_with(f);

		*storage = ext.into_storages();

		r
	}

	/// Execute the given closure while `self` is set as externalities.
	///
	/// Returns the result of the given closure.
	pub fn execute_with<R>(&mut self, f: impl FnOnce() -> R) -> R {
		sp_externalities::set_and_run_with_externalities(self, f)
	}

	/// List of active extensions.
	pub fn extensions(&mut self) -> &mut Extensions {
		&mut self.extensions
	}

	/// Register an extension.
	pub fn register_extension(&mut self, ext: impl Extension) {
		self.extensions.register(ext);
	}
}

impl PartialEq for BasicExternalities {
	fn eq(&self, other: &BasicExternalities) -> bool {
		self.overlay.changes().map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>() ==
			other.overlay.changes().map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>() &&
			self.overlay
				.children()
				.map(|(iter, i)| (i, iter.map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>()))
				.collect::<BTreeMap<_, _>>() ==
				other
					.overlay
					.children()
					.map(|(iter, i)| {
						(i, iter.map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>())
					})
					.collect::<BTreeMap<_, _>>()
	}
}

impl FromIterator<(StorageKey, StorageValue)> for BasicExternalities {
	fn from_iter<I: IntoIterator<Item = (StorageKey, StorageValue)>>(iter: I) -> Self {
		let mut t = Self::default();
		iter.into_iter().for_each(|(k, v)| t.insert(k, v));
		t
	}
}

impl Default for BasicExternalities {
	fn default() -> Self {
		Self::new(Default::default())
	}
}

impl From<BTreeMap<StorageKey, StorageValue>> for BasicExternalities {
	fn from(map: BTreeMap<StorageKey, StorageValue>) -> Self {
		Self::from_iter(map.into_iter())
	}
}

impl Externalities for BasicExternalities {
	fn set_offchain_storage(&mut self, _key: &[u8], _value: Option<&[u8]>) {}

	fn storage(&self, key: &[u8]) -> Option<StorageValue> {
		self.overlay.storage(key).and_then(|v| v.map(|v| v.to_vec()))
	}

	fn storage_hash(&self, key: &[u8]) -> Option<Vec<u8>> {
		self.storage(key).map(|v| Blake2Hasher::hash(&v).encode())
	}

	fn child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageValue> {
		self.overlay.child_storage(child_info, key).and_then(|v| v.map(|v| v.to_vec()))
	}

	fn child_storage_hash(&self, child_info: &ChildInfo, key: &[u8]) -> Option<Vec<u8>> {
		self.child_storage(child_info, key).map(|v| Blake2Hasher::hash(&v).encode())
	}

	fn next_storage_key(&self, key: &[u8]) -> Option<StorageKey> {
		self.overlay.iter_after(key).find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}

	fn next_child_storage_key(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageKey> {
		self.overlay
			.child_iter_after(child_info.storage_key(), key)
			.find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}

	fn place_storage(&mut self, key: StorageKey, maybe_value: Option<StorageValue>) {
		if is_child_storage_key(&key) {
			warn!(target: "trie", "Refuse to set child storage key via main storage");
			return
		}

		self.overlay.set_storage(key, maybe_value)
	}
More examples
Hide additional examples
src/ext.rs (line 413)
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
	fn place_storage(&mut self, key: StorageKey, value: Option<StorageValue>) {
		let _guard = guard();
		if is_child_storage_key(&key) {
			warn!(target: "trie", "Refuse to directly set child storage key");
			return
		}

		// NOTE: be careful about touching the key names – used outside substrate!
		trace!(
			target: "state",
			method = "Put",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			value = ?value.as_ref().map(HexDisplay::from),
			value_encoded = %HexDisplay::from(
				&value
					.as_ref()
					.map(|v| EncodeOpaqueValue(v.clone()))
					.encode()
			),
		);

		self.mark_dirty();
		self.overlay.set_storage(key, value);
	}

	fn place_child_storage(
		&mut self,
		child_info: &ChildInfo,
		key: StorageKey,
		value: Option<StorageValue>,
	) {
		trace!(
			target: "state",
			method = "ChildPut",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			key = %HexDisplay::from(&key),
			value = ?value.as_ref().map(HexDisplay::from),
		);
		let _guard = guard();

		self.mark_dirty();
		self.overlay.set_child_storage(child_info, key, value);
	}

	fn kill_child_storage(
		&mut self,
		child_info: &ChildInfo,
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ChildKill",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
		);
		let _guard = guard();
		self.mark_dirty();
		let overlay = self.overlay.clear_child_storage(child_info);
		let (maybe_cursor, backend, loops) =
			self.limit_remove_from_backend(Some(child_info), None, maybe_limit, maybe_cursor);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn clear_prefix(
		&mut self,
		prefix: &[u8],
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ClearPrefix",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			prefix = %HexDisplay::from(&prefix),
		);
		let _guard = guard();

		if sp_core::storage::well_known_keys::starts_with_child_storage_key(prefix) {
			warn!(
				target: "trie",
				"Refuse to directly clear prefix that is part or contains of child storage key",
			);
			return MultiRemovalResults { maybe_cursor: None, backend: 0, unique: 0, loops: 0 }
		}

		self.mark_dirty();
		let overlay = self.overlay.clear_prefix(prefix);
		let (maybe_cursor, backend, loops) =
			self.limit_remove_from_backend(None, Some(prefix), maybe_limit, maybe_cursor);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn clear_child_prefix(
		&mut self,
		child_info: &ChildInfo,
		prefix: &[u8],
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		trace!(
			target: "state",
			method = "ChildClearPrefix",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			child_info = %HexDisplay::from(&child_info.storage_key()),
			prefix = %HexDisplay::from(&prefix),
		);
		let _guard = guard();

		self.mark_dirty();
		let overlay = self.overlay.clear_child_prefix(child_info, prefix);
		let (maybe_cursor, backend, loops) = self.limit_remove_from_backend(
			Some(child_info),
			Some(prefix),
			maybe_limit,
			maybe_cursor,
		);
		MultiRemovalResults { maybe_cursor, backend, unique: overlay + backend, loops }
	}

	fn storage_append(&mut self, key: Vec<u8>, value: Vec<u8>) {
		trace!(
			target: "state",
			method = "Append",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			key = %HexDisplay::from(&key),
			value = %HexDisplay::from(&value),
		);

		let _guard = guard();
		self.mark_dirty();

		let backend = &mut self.backend;
		let current_value = self.overlay.value_mut_or_insert_with(&key, || {
			backend.storage(&key).expect(EXT_NOT_ALLOWED_TO_FAIL).unwrap_or_default()
		});
		StorageAppend::new(current_value).append(value);
	}

	fn storage_root(&mut self, state_version: StateVersion) -> Vec<u8> {
		let _guard = guard();
		if let Some(ref root) = self.storage_transaction_cache.transaction_storage_root {
			trace!(
				target: "state",
				method = "StorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			return root.encode()
		}

		let root =
			self.overlay
				.storage_root(self.backend, self.storage_transaction_cache, state_version);
		trace!(
			target: "state",
			method = "StorageRoot",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			storage_root = %HexDisplay::from(&root.as_ref()),
			cached = false,
		);
		root.encode()
	}

	fn child_storage_root(
		&mut self,
		child_info: &ChildInfo,
		state_version: StateVersion,
	) -> Vec<u8> {
		let _guard = guard();
		let storage_key = child_info.storage_key();
		let prefixed_storage_key = child_info.prefixed_storage_key();
		if self.storage_transaction_cache.transaction_storage_root.is_some() {
			let root = self
				.storage(prefixed_storage_key.as_slice())
				.and_then(|k| Decode::decode(&mut &k[..]).ok())
				// V1 is equivalent to V0 on empty root.
				.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);
			trace!(
				target: "state",
				method = "ChildStorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				child_info = %HexDisplay::from(&storage_key),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			root.encode()
		} else {
			let root = if let Some((changes, info)) = self.overlay.child_changes(storage_key) {
				let delta = changes.map(|(k, v)| (k.as_ref(), v.value().map(AsRef::as_ref)));
				Some(self.backend.child_storage_root(info, delta, state_version))
			} else {
				None
			};

			if let Some((root, is_empty, _)) = root {
				let root = root.encode();
				// We store update in the overlay in order to be able to use
				// 'self.storage_transaction' cache. This is brittle as it rely on Ext only querying
				// the trie backend for storage root.
				// A better design would be to manage 'child_storage_transaction' in a
				// similar way as 'storage_transaction' but for each child trie.
				if is_empty {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), None);
				} else {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), Some(root.clone()));
				}

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root
			} else {
				// empty overlay
				let root = self
					.storage(prefixed_storage_key.as_slice())
					.and_then(|k| Decode::decode(&mut &k[..]).ok())
					// V1 is equivalent to V0 on empty root.
					.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root.encode()
			}
		}
	}

	fn storage_index_transaction(&mut self, index: u32, hash: &[u8], size: u32) {
		trace!(
			target: "state",
			method = "IndexTransaction",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
			%size,
		);

		self.overlay.add_transaction_index(IndexOperation::Insert {
			extrinsic: index,
			hash: hash.to_vec(),
			size,
		});
	}

	/// Renew existing piece of data storage.
	fn storage_renew_transaction_index(&mut self, index: u32, hash: &[u8]) {
		trace!(
			target: "state",
			method = "RenewTransactionIndex",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
		);

		self.overlay
			.add_transaction_index(IndexOperation::Renew { extrinsic: index, hash: hash.to_vec() });
	}

	fn storage_start_transaction(&mut self) {
		self.overlay.start_transaction()
	}

	fn storage_rollback_transaction(&mut self) -> Result<(), ()> {
		self.mark_dirty();
		self.overlay.rollback_transaction().map_err(|_| ())
	}

	fn storage_commit_transaction(&mut self) -> Result<(), ()> {
		self.overlay.commit_transaction().map_err(|_| ())
	}

	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn commit(&mut self) {
		// Bench always use latest state.
		let state_version = StateVersion::default();
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.commit_transaction().expect(BENCHMARKING_FN);
		}
		let changes = self
			.overlay
			.drain_storage_changes(self.backend, self.storage_transaction_cache, state_version)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend
			.commit(
				changes.transaction_storage_root,
				changes.transaction,
				changes.main_storage_changes,
				changes.child_storage_changes,
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn read_write_count(&self) -> (u32, u32, u32, u32) {
		self.backend.read_write_count()
	}

	fn reset_read_write_count(&mut self) {
		self.backend.reset_read_write_count()
	}

	fn get_whitelist(&self) -> Vec<TrackedStorageKey> {
		self.backend.get_whitelist()
	}

	fn set_whitelist(&mut self, new: Vec<TrackedStorageKey>) {
		self.backend.set_whitelist(new)
	}

	fn proof_size(&self) -> Option<u32> {
		self.backend.proof_size()
	}

	fn get_read_and_written_keys(&self) -> Vec<(Vec<u8>, u32, u32, bool)> {
		self.backend.get_read_and_written_keys()
	}
}

impl<'a, H, B> Ext<'a, H, B>
where
	H: Hasher,
	H::Out: Ord + 'static + codec::Codec,
	B: Backend<H>,
{
	fn limit_remove_from_backend(
		&mut self,
		maybe_child: Option<&ChildInfo>,
		maybe_prefix: Option<&[u8]>,
		maybe_limit: Option<u32>,
		maybe_cursor: Option<&[u8]>,
	) -> (Option<Vec<u8>>, u32, u32) {
		let mut delete_count: u32 = 0;
		let mut loop_count: u32 = 0;
		let mut maybe_next_key = None;
		self.backend
			.apply_to_keys_while(maybe_child, maybe_prefix, maybe_cursor, |key| {
				if maybe_limit.map_or(false, |limit| loop_count == limit) {
					maybe_next_key = Some(key.to_vec());
					return false
				}
				let overlay = match maybe_child {
					Some(child_info) => self.overlay.child_storage(child_info, key),
					None => self.overlay.storage(key),
				};
				if !matches!(overlay, Some(None)) {
					// not pending deletion from the backend - delete it.
					if let Some(child_info) = maybe_child {
						self.overlay.set_child_storage(child_info, key.to_vec(), None);
					} else {
						self.overlay.set_storage(key.to_vec(), None);
					}
					delete_count = delete_count.saturating_add(1);
				}
				loop_count = loop_count.saturating_add(1);
				true
			});
		(maybe_next_key, delete_count, loop_count)
	}

Returns the current nesting depth of the transaction stack.

A value of zero means that no transaction is open and changes are committed on write.

Examples found in repository?
src/ext.rs (line 678)
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn commit(&mut self) {
		// Bench always use latest state.
		let state_version = StateVersion::default();
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.commit_transaction().expect(BENCHMARKING_FN);
		}
		let changes = self
			.overlay
			.drain_storage_changes(self.backend, self.storage_transaction_cache, state_version)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend
			.commit(
				changes.transaction_storage_root,
				changes.transaction,
				changes.main_storage_changes,
				changes.child_storage_changes,
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

Start a new nested transaction.

This allows to either commit or roll back all changes that where made while this transaction was open. Any transaction must be closed by either rollback_transaction or commit_transaction before this overlay can be converted into storage changes.

Changes made without any open transaction are committed immediately.

Examples found in repository?
src/basic.rs (line 295)
294
295
296
	fn storage_start_transaction(&mut self) {
		self.overlay.start_transaction()
	}
More examples
Hide additional examples
src/ext.rs (line 665)
664
665
666
	fn storage_start_transaction(&mut self) {
		self.overlay.start_transaction()
	}
src/lib.rs (line 436)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
		fn execute_call_with_both_strategy<Handler>(
			&mut self,
			on_consensus_failure: Handler,
		) -> CallResult<Exec::Error>
		where
			Handler:
				FnOnce(CallResult<Exec::Error>, CallResult<Exec::Error>) -> CallResult<Exec::Error>,
		{
			self.overlay.start_transaction();
			let (result, was_native) = self.execute_aux(true);

			if was_native {
				self.overlay.rollback_transaction().expect(PROOF_CLOSE_TRANSACTION);
				let (wasm_result, _) = self.execute_aux(false);

				if (result.is_ok() &&
					wasm_result.is_ok() && result.as_ref().ok() == wasm_result.as_ref().ok()) ||
					result.is_err() && wasm_result.is_err()
				{
					result
				} else {
					on_consensus_failure(wasm_result, result)
				}
			} else {
				self.overlay.commit_transaction().expect(PROOF_CLOSE_TRANSACTION);
				result
			}
		}

		fn execute_call_with_native_else_wasm_strategy(&mut self) -> CallResult<Exec::Error> {
			self.overlay.start_transaction();
			let (result, was_native) = self.execute_aux(true);

			if !was_native || result.is_ok() {
				self.overlay.commit_transaction().expect(PROOF_CLOSE_TRANSACTION);
				result
			} else {
				self.overlay.rollback_transaction().expect(PROOF_CLOSE_TRANSACTION);
				self.execute_aux(false).0
			}
		}

Rollback the last transaction started by start_transaction.

Any changes made during that transaction are discarded. Returns an error if there is no open transaction that can be rolled back.

Examples found in repository?
src/basic.rs (line 299)
298
299
300
	fn storage_rollback_transaction(&mut self) -> Result<(), ()> {
		self.overlay.rollback_transaction().map_err(drop)
	}
More examples
Hide additional examples
src/ext.rs (line 670)
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
	fn storage_rollback_transaction(&mut self) -> Result<(), ()> {
		self.mark_dirty();
		self.overlay.rollback_transaction().map_err(|_| ())
	}

	fn storage_commit_transaction(&mut self) -> Result<(), ()> {
		self.overlay.commit_transaction().map_err(|_| ())
	}

	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}
src/lib.rs (line 440)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
		fn execute_call_with_both_strategy<Handler>(
			&mut self,
			on_consensus_failure: Handler,
		) -> CallResult<Exec::Error>
		where
			Handler:
				FnOnce(CallResult<Exec::Error>, CallResult<Exec::Error>) -> CallResult<Exec::Error>,
		{
			self.overlay.start_transaction();
			let (result, was_native) = self.execute_aux(true);

			if was_native {
				self.overlay.rollback_transaction().expect(PROOF_CLOSE_TRANSACTION);
				let (wasm_result, _) = self.execute_aux(false);

				if (result.is_ok() &&
					wasm_result.is_ok() && result.as_ref().ok() == wasm_result.as_ref().ok()) ||
					result.is_err() && wasm_result.is_err()
				{
					result
				} else {
					on_consensus_failure(wasm_result, result)
				}
			} else {
				self.overlay.commit_transaction().expect(PROOF_CLOSE_TRANSACTION);
				result
			}
		}

		fn execute_call_with_native_else_wasm_strategy(&mut self) -> CallResult<Exec::Error> {
			self.overlay.start_transaction();
			let (result, was_native) = self.execute_aux(true);

			if !was_native || result.is_ok() {
				self.overlay.commit_transaction().expect(PROOF_CLOSE_TRANSACTION);
				result
			} else {
				self.overlay.rollback_transaction().expect(PROOF_CLOSE_TRANSACTION);
				self.execute_aux(false).0
			}
		}

Commit the last transaction started by start_transaction.

Any changes made during that transaction are committed. Returns an error if there is no open transaction that can be committed.

Examples found in repository?
src/basic.rs (line 303)
302
303
304
	fn storage_commit_transaction(&mut self) -> Result<(), ()> {
		self.overlay.commit_transaction().map_err(drop)
	}
More examples
Hide additional examples
src/ext.rs (line 674)
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
	fn storage_commit_transaction(&mut self) -> Result<(), ()> {
		self.overlay.commit_transaction().map_err(|_| ())
	}

	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn commit(&mut self) {
		// Bench always use latest state.
		let state_version = StateVersion::default();
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.commit_transaction().expect(BENCHMARKING_FN);
		}
		let changes = self
			.overlay
			.drain_storage_changes(self.backend, self.storage_transaction_cache, state_version)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend
			.commit(
				changes.transaction_storage_root,
				changes.transaction,
				changes.main_storage_changes,
				changes.child_storage_changes,
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}
src/lib.rs (line 452)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
		fn execute_call_with_both_strategy<Handler>(
			&mut self,
			on_consensus_failure: Handler,
		) -> CallResult<Exec::Error>
		where
			Handler:
				FnOnce(CallResult<Exec::Error>, CallResult<Exec::Error>) -> CallResult<Exec::Error>,
		{
			self.overlay.start_transaction();
			let (result, was_native) = self.execute_aux(true);

			if was_native {
				self.overlay.rollback_transaction().expect(PROOF_CLOSE_TRANSACTION);
				let (wasm_result, _) = self.execute_aux(false);

				if (result.is_ok() &&
					wasm_result.is_ok() && result.as_ref().ok() == wasm_result.as_ref().ok()) ||
					result.is_err() && wasm_result.is_err()
				{
					result
				} else {
					on_consensus_failure(wasm_result, result)
				}
			} else {
				self.overlay.commit_transaction().expect(PROOF_CLOSE_TRANSACTION);
				result
			}
		}

		fn execute_call_with_native_else_wasm_strategy(&mut self) -> CallResult<Exec::Error> {
			self.overlay.start_transaction();
			let (result, was_native) = self.execute_aux(true);

			if !was_native || result.is_ok() {
				self.overlay.commit_transaction().expect(PROOF_CLOSE_TRANSACTION);
				result
			} else {
				self.overlay.rollback_transaction().expect(PROOF_CLOSE_TRANSACTION);
				self.execute_aux(false).0
			}
		}

Call this before transfering control to the runtime.

This protects all existing transactions from being removed by the runtime. Calling this while already inside the runtime will return an error.

Examples found in repository?
src/ext.rs (line 691)
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn commit(&mut self) {
		// Bench always use latest state.
		let state_version = StateVersion::default();
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.commit_transaction().expect(BENCHMARKING_FN);
		}
		let changes = self
			.overlay
			.drain_storage_changes(self.backend, self.storage_transaction_cache, state_version)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend
			.commit(
				changes.transaction_storage_root,
				changes.transaction,
				changes.main_storage_changes,
				changes.child_storage_changes,
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}
More examples
Hide additional examples
src/lib.rs (line 389)
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
		fn execute_aux(&mut self, use_native: bool) -> (CallResult<Exec::Error>, bool) {
			let mut cache = StorageTransactionCache::default();

			let cache = match self.storage_transaction_cache.as_mut() {
				Some(cache) => cache,
				None => &mut cache,
			};

			self.overlay
				.enter_runtime()
				.expect("StateMachine is never called from the runtime; qed");

			let mut ext = Ext::new(self.overlay, cache, self.backend, Some(&mut self.extensions));

			let ext_id = ext.id;

			trace!(
				target: "state",
				ext_id = %HexDisplay::from(&ext_id.to_le_bytes()),
				method = %self.method,
				parent_hash = %self.parent_hash.map(|h| format!("{:?}", h)).unwrap_or_else(|| String::from("None")),
				input = ?HexDisplay::from(&self.call_data),
				"Call",
			);

			let (result, was_native) = self.exec.call(
				&mut ext,
				self.runtime_code,
				self.method,
				self.call_data,
				use_native,
			);

			self.overlay
				.exit_runtime()
				.expect("Runtime is not able to call this function in the overlay; qed");

			trace!(
				target: "state",
				ext_id = %HexDisplay::from(&ext_id.to_le_bytes()),
				?was_native,
				?result,
				"Return",
			);

			(result, was_native)
		}

Call this when control returns from the runtime.

This commits all dangling transaction left open by the runtime. Calling this while outside the runtime will return an error.

Examples found in repository?
src/lib.rs (line 414)
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
		fn execute_aux(&mut self, use_native: bool) -> (CallResult<Exec::Error>, bool) {
			let mut cache = StorageTransactionCache::default();

			let cache = match self.storage_transaction_cache.as_mut() {
				Some(cache) => cache,
				None => &mut cache,
			};

			self.overlay
				.enter_runtime()
				.expect("StateMachine is never called from the runtime; qed");

			let mut ext = Ext::new(self.overlay, cache, self.backend, Some(&mut self.extensions));

			let ext_id = ext.id;

			trace!(
				target: "state",
				ext_id = %HexDisplay::from(&ext_id.to_le_bytes()),
				method = %self.method,
				parent_hash = %self.parent_hash.map(|h| format!("{:?}", h)).unwrap_or_else(|| String::from("None")),
				input = ?HexDisplay::from(&self.call_data),
				"Call",
			);

			let (result, was_native) = self.exec.call(
				&mut ext,
				self.runtime_code,
				self.method,
				self.call_data,
				use_native,
			);

			self.overlay
				.exit_runtime()
				.expect("Runtime is not able to call this function in the overlay; qed");

			trace!(
				target: "state",
				ext_id = %HexDisplay::from(&ext_id.to_le_bytes()),
				?was_native,
				?result,
				"Return",
			);

			(result, was_native)
		}

Consume all changes (top + children) and return them.

After calling this function no more changes are contained in this changeset.

Panics: Panics if transaction_depth() > 0

Examples found in repository?
src/testing.rs (line 132)
131
132
133
	pub fn persist_offchain_overlay(&mut self) {
		self.offchain_db.apply_offchain_changes(self.overlay.offchain_drain_committed());
	}
More examples
Hide additional examples
src/overlayed_changes/mod.rs (line 534)
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
	pub fn drain_storage_changes<B: Backend<H>, H: Hasher>(
		&mut self,
		backend: &B,
		cache: &mut StorageTransactionCache<B::Transaction, H>,
		state_version: StateVersion,
	) -> Result<StorageChanges<B::Transaction, H>, DefaultError>
	where
		H::Out: Ord + Encode + 'static,
	{
		// If the transaction does not exist, we generate it.
		if cache.transaction.is_none() {
			self.storage_root(backend, cache, state_version);
		}

		let (transaction, transaction_storage_root) = cache
			.transaction
			.take()
			.and_then(|t| cache.transaction_storage_root.take().map(|tr| (t, tr)))
			.expect("Transaction was be generated as part of `storage_root`; qed");

		let (main_storage_changes, child_storage_changes) = self.drain_committed();
		let offchain_storage_changes = self.offchain_drain_committed().collect();

		#[cfg(feature = "std")]
		let transaction_index_changes = std::mem::take(&mut self.transaction_index_ops);

		Ok(StorageChanges {
			main_storage_changes: main_storage_changes.collect(),
			child_storage_changes: child_storage_changes
				.map(|(sk, it)| (sk, it.0.collect()))
				.collect(),
			offchain_storage_changes,
			transaction,
			transaction_storage_root,
			#[cfg(feature = "std")]
			transaction_index_changes,
		})
	}

Get an iterator over all child changes as seen by the current transaction.

Examples found in repository?
src/testing.rs (line 166)
161
162
163
164
165
166
167
168
169
170
171
172
173
174
	pub fn as_backend(&self) -> InMemoryBackend<H> {
		let top: Vec<_> =
			self.overlay.changes().map(|(k, v)| (k.clone(), v.value().cloned())).collect();
		let mut transaction = vec![(None, top)];

		for (child_changes, child_info) in self.overlay.children() {
			transaction.push((
				Some(child_info.clone()),
				child_changes.map(|(k, v)| (k.clone(), v.value().cloned())).collect(),
			))
		}

		self.backend.update(transaction, self.state_version)
	}
More examples
Hide additional examples
src/basic.rs (line 72)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
	pub fn into_storages(self) -> Storage {
		Storage {
			top: self
				.overlay
				.changes()
				.filter_map(|(k, v)| v.value().map(|v| (k.to_vec(), v.to_vec())))
				.collect(),
			children_default: self
				.overlay
				.children()
				.map(|(iter, i)| {
					(
						i.storage_key().to_vec(),
						sp_core::storage::StorageChild {
							data: iter
								.filter_map(|(k, v)| v.value().map(|v| (k.to_vec(), v.to_vec())))
								.collect(),
							child_info: i.clone(),
						},
					)
				})
				.collect(),
		}
	}

	/// Execute the given closure `f` with the externalities set and initialized with `storage`.
	///
	/// Returns the result of the closure and updates `storage` with all changes.
	pub fn execute_with_storage<R>(
		storage: &mut sp_core::storage::Storage,
		f: impl FnOnce() -> R,
	) -> R {
		let mut ext = Self::new(std::mem::take(storage));

		let r = ext.execute_with(f);

		*storage = ext.into_storages();

		r
	}

	/// Execute the given closure while `self` is set as externalities.
	///
	/// Returns the result of the given closure.
	pub fn execute_with<R>(&mut self, f: impl FnOnce() -> R) -> R {
		sp_externalities::set_and_run_with_externalities(self, f)
	}

	/// List of active extensions.
	pub fn extensions(&mut self) -> &mut Extensions {
		&mut self.extensions
	}

	/// Register an extension.
	pub fn register_extension(&mut self, ext: impl Extension) {
		self.extensions.register(ext);
	}
}

impl PartialEq for BasicExternalities {
	fn eq(&self, other: &BasicExternalities) -> bool {
		self.overlay.changes().map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>() ==
			other.overlay.changes().map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>() &&
			self.overlay
				.children()
				.map(|(iter, i)| (i, iter.map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>()))
				.collect::<BTreeMap<_, _>>() ==
				other
					.overlay
					.children()
					.map(|(iter, i)| {
						(i, iter.map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>())
					})
					.collect::<BTreeMap<_, _>>()
	}
}

impl FromIterator<(StorageKey, StorageValue)> for BasicExternalities {
	fn from_iter<I: IntoIterator<Item = (StorageKey, StorageValue)>>(iter: I) -> Self {
		let mut t = Self::default();
		iter.into_iter().for_each(|(k, v)| t.insert(k, v));
		t
	}
}

impl Default for BasicExternalities {
	fn default() -> Self {
		Self::new(Default::default())
	}
}

impl From<BTreeMap<StorageKey, StorageValue>> for BasicExternalities {
	fn from(map: BTreeMap<StorageKey, StorageValue>) -> Self {
		Self::from_iter(map.into_iter())
	}
}

impl Externalities for BasicExternalities {
	fn set_offchain_storage(&mut self, _key: &[u8], _value: Option<&[u8]>) {}

	fn storage(&self, key: &[u8]) -> Option<StorageValue> {
		self.overlay.storage(key).and_then(|v| v.map(|v| v.to_vec()))
	}

	fn storage_hash(&self, key: &[u8]) -> Option<Vec<u8>> {
		self.storage(key).map(|v| Blake2Hasher::hash(&v).encode())
	}

	fn child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageValue> {
		self.overlay.child_storage(child_info, key).and_then(|v| v.map(|v| v.to_vec()))
	}

	fn child_storage_hash(&self, child_info: &ChildInfo, key: &[u8]) -> Option<Vec<u8>> {
		self.child_storage(child_info, key).map(|v| Blake2Hasher::hash(&v).encode())
	}

	fn next_storage_key(&self, key: &[u8]) -> Option<StorageKey> {
		self.overlay.iter_after(key).find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}

	fn next_child_storage_key(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageKey> {
		self.overlay
			.child_iter_after(child_info.storage_key(), key)
			.find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}

	fn place_storage(&mut self, key: StorageKey, maybe_value: Option<StorageValue>) {
		if is_child_storage_key(&key) {
			warn!(target: "trie", "Refuse to set child storage key via main storage");
			return
		}

		self.overlay.set_storage(key, maybe_value)
	}

	fn place_child_storage(
		&mut self,
		child_info: &ChildInfo,
		key: StorageKey,
		value: Option<StorageValue>,
	) {
		self.overlay.set_child_storage(child_info, key, value);
	}

	fn kill_child_storage(
		&mut self,
		child_info: &ChildInfo,
		_maybe_limit: Option<u32>,
		_maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		let count = self.overlay.clear_child_storage(child_info);
		MultiRemovalResults { maybe_cursor: None, backend: count, unique: count, loops: count }
	}

	fn clear_prefix(
		&mut self,
		prefix: &[u8],
		_maybe_limit: Option<u32>,
		_maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		if is_child_storage_key(prefix) {
			warn!(
				target: "trie",
				"Refuse to clear prefix that is part of child storage key via main storage"
			);
			let maybe_cursor = Some(prefix.to_vec());
			return MultiRemovalResults { maybe_cursor, backend: 0, unique: 0, loops: 0 }
		}

		let count = self.overlay.clear_prefix(prefix);
		MultiRemovalResults { maybe_cursor: None, backend: count, unique: count, loops: count }
	}

	fn clear_child_prefix(
		&mut self,
		child_info: &ChildInfo,
		prefix: &[u8],
		_maybe_limit: Option<u32>,
		_maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		let count = self.overlay.clear_child_prefix(child_info, prefix);
		MultiRemovalResults { maybe_cursor: None, backend: count, unique: count, loops: count }
	}

	fn storage_append(&mut self, key: Vec<u8>, value: Vec<u8>) {
		let current_value = self.overlay.value_mut_or_insert_with(&key, || Default::default());
		crate::ext::StorageAppend::new(current_value).append(value);
	}

	fn storage_root(&mut self, state_version: StateVersion) -> Vec<u8> {
		let mut top = self
			.overlay
			.changes()
			.filter_map(|(k, v)| v.value().map(|v| (k.clone(), v.clone())))
			.collect::<BTreeMap<_, _>>();
		// Single child trie implementation currently allows using the same child
		// empty root for all child trie. Using null storage key until multiple
		// type of child trie support.
		let empty_hash = empty_child_trie_root::<LayoutV1<Blake2Hasher>>();
		for child_info in self.overlay.children().map(|d| d.1.clone()).collect::<Vec<_>>() {
			let child_root = self.child_storage_root(&child_info, state_version);
			if empty_hash[..] == child_root[..] {
				top.remove(child_info.prefixed_storage_key().as_slice());
			} else {
				top.insert(child_info.prefixed_storage_key().into_inner(), child_root);
			}
		}

		match state_version {
			StateVersion::V0 => LayoutV0::<Blake2Hasher>::trie_root(top).as_ref().into(),
			StateVersion::V1 => LayoutV1::<Blake2Hasher>::trie_root(top).as_ref().into(),
		}
	}
src/overlayed_changes/mod.rs (line 589)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
	pub fn storage_root<H: Hasher, B: Backend<H>>(
		&self,
		backend: &B,
		cache: &mut StorageTransactionCache<B::Transaction, H>,
		state_version: StateVersion,
	) -> H::Out
	where
		H::Out: Ord + Encode,
	{
		let delta = self.changes().map(|(k, v)| (&k[..], v.value().map(|v| &v[..])));
		let child_delta = self.children().map(|(changes, info)| {
			(info, changes.map(|(k, v)| (&k[..], v.value().map(|v| &v[..]))))
		});

		let (root, transaction) = backend.full_storage_root(delta, child_delta, state_version);

		cache.transaction = Some(transaction);
		cache.transaction_storage_root = Some(root);

		root
	}

Get an iterator over all top changes as been by the current transaction.

Examples found in repository?
src/testing.rs (line 163)
161
162
163
164
165
166
167
168
169
170
171
172
173
174
	pub fn as_backend(&self) -> InMemoryBackend<H> {
		let top: Vec<_> =
			self.overlay.changes().map(|(k, v)| (k.clone(), v.value().cloned())).collect();
		let mut transaction = vec![(None, top)];

		for (child_changes, child_info) in self.overlay.children() {
			transaction.push((
				Some(child_info.clone()),
				child_changes.map(|(k, v)| (k.clone(), v.value().cloned())).collect(),
			))
		}

		self.backend.update(transaction, self.state_version)
	}
More examples
Hide additional examples
src/basic.rs (line 67)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
	pub fn into_storages(self) -> Storage {
		Storage {
			top: self
				.overlay
				.changes()
				.filter_map(|(k, v)| v.value().map(|v| (k.to_vec(), v.to_vec())))
				.collect(),
			children_default: self
				.overlay
				.children()
				.map(|(iter, i)| {
					(
						i.storage_key().to_vec(),
						sp_core::storage::StorageChild {
							data: iter
								.filter_map(|(k, v)| v.value().map(|v| (k.to_vec(), v.to_vec())))
								.collect(),
							child_info: i.clone(),
						},
					)
				})
				.collect(),
		}
	}

	/// Execute the given closure `f` with the externalities set and initialized with `storage`.
	///
	/// Returns the result of the closure and updates `storage` with all changes.
	pub fn execute_with_storage<R>(
		storage: &mut sp_core::storage::Storage,
		f: impl FnOnce() -> R,
	) -> R {
		let mut ext = Self::new(std::mem::take(storage));

		let r = ext.execute_with(f);

		*storage = ext.into_storages();

		r
	}

	/// Execute the given closure while `self` is set as externalities.
	///
	/// Returns the result of the given closure.
	pub fn execute_with<R>(&mut self, f: impl FnOnce() -> R) -> R {
		sp_externalities::set_and_run_with_externalities(self, f)
	}

	/// List of active extensions.
	pub fn extensions(&mut self) -> &mut Extensions {
		&mut self.extensions
	}

	/// Register an extension.
	pub fn register_extension(&mut self, ext: impl Extension) {
		self.extensions.register(ext);
	}
}

impl PartialEq for BasicExternalities {
	fn eq(&self, other: &BasicExternalities) -> bool {
		self.overlay.changes().map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>() ==
			other.overlay.changes().map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>() &&
			self.overlay
				.children()
				.map(|(iter, i)| (i, iter.map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>()))
				.collect::<BTreeMap<_, _>>() ==
				other
					.overlay
					.children()
					.map(|(iter, i)| {
						(i, iter.map(|(k, v)| (k, v.value())).collect::<BTreeMap<_, _>>())
					})
					.collect::<BTreeMap<_, _>>()
	}
}

impl FromIterator<(StorageKey, StorageValue)> for BasicExternalities {
	fn from_iter<I: IntoIterator<Item = (StorageKey, StorageValue)>>(iter: I) -> Self {
		let mut t = Self::default();
		iter.into_iter().for_each(|(k, v)| t.insert(k, v));
		t
	}
}

impl Default for BasicExternalities {
	fn default() -> Self {
		Self::new(Default::default())
	}
}

impl From<BTreeMap<StorageKey, StorageValue>> for BasicExternalities {
	fn from(map: BTreeMap<StorageKey, StorageValue>) -> Self {
		Self::from_iter(map.into_iter())
	}
}

impl Externalities for BasicExternalities {
	fn set_offchain_storage(&mut self, _key: &[u8], _value: Option<&[u8]>) {}

	fn storage(&self, key: &[u8]) -> Option<StorageValue> {
		self.overlay.storage(key).and_then(|v| v.map(|v| v.to_vec()))
	}

	fn storage_hash(&self, key: &[u8]) -> Option<Vec<u8>> {
		self.storage(key).map(|v| Blake2Hasher::hash(&v).encode())
	}

	fn child_storage(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageValue> {
		self.overlay.child_storage(child_info, key).and_then(|v| v.map(|v| v.to_vec()))
	}

	fn child_storage_hash(&self, child_info: &ChildInfo, key: &[u8]) -> Option<Vec<u8>> {
		self.child_storage(child_info, key).map(|v| Blake2Hasher::hash(&v).encode())
	}

	fn next_storage_key(&self, key: &[u8]) -> Option<StorageKey> {
		self.overlay.iter_after(key).find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}

	fn next_child_storage_key(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageKey> {
		self.overlay
			.child_iter_after(child_info.storage_key(), key)
			.find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}

	fn place_storage(&mut self, key: StorageKey, maybe_value: Option<StorageValue>) {
		if is_child_storage_key(&key) {
			warn!(target: "trie", "Refuse to set child storage key via main storage");
			return
		}

		self.overlay.set_storage(key, maybe_value)
	}

	fn place_child_storage(
		&mut self,
		child_info: &ChildInfo,
		key: StorageKey,
		value: Option<StorageValue>,
	) {
		self.overlay.set_child_storage(child_info, key, value);
	}

	fn kill_child_storage(
		&mut self,
		child_info: &ChildInfo,
		_maybe_limit: Option<u32>,
		_maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		let count = self.overlay.clear_child_storage(child_info);
		MultiRemovalResults { maybe_cursor: None, backend: count, unique: count, loops: count }
	}

	fn clear_prefix(
		&mut self,
		prefix: &[u8],
		_maybe_limit: Option<u32>,
		_maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		if is_child_storage_key(prefix) {
			warn!(
				target: "trie",
				"Refuse to clear prefix that is part of child storage key via main storage"
			);
			let maybe_cursor = Some(prefix.to_vec());
			return MultiRemovalResults { maybe_cursor, backend: 0, unique: 0, loops: 0 }
		}

		let count = self.overlay.clear_prefix(prefix);
		MultiRemovalResults { maybe_cursor: None, backend: count, unique: count, loops: count }
	}

	fn clear_child_prefix(
		&mut self,
		child_info: &ChildInfo,
		prefix: &[u8],
		_maybe_limit: Option<u32>,
		_maybe_cursor: Option<&[u8]>,
	) -> MultiRemovalResults {
		let count = self.overlay.clear_child_prefix(child_info, prefix);
		MultiRemovalResults { maybe_cursor: None, backend: count, unique: count, loops: count }
	}

	fn storage_append(&mut self, key: Vec<u8>, value: Vec<u8>) {
		let current_value = self.overlay.value_mut_or_insert_with(&key, || Default::default());
		crate::ext::StorageAppend::new(current_value).append(value);
	}

	fn storage_root(&mut self, state_version: StateVersion) -> Vec<u8> {
		let mut top = self
			.overlay
			.changes()
			.filter_map(|(k, v)| v.value().map(|v| (k.clone(), v.clone())))
			.collect::<BTreeMap<_, _>>();
		// Single child trie implementation currently allows using the same child
		// empty root for all child trie. Using null storage key until multiple
		// type of child trie support.
		let empty_hash = empty_child_trie_root::<LayoutV1<Blake2Hasher>>();
		for child_info in self.overlay.children().map(|d| d.1.clone()).collect::<Vec<_>>() {
			let child_root = self.child_storage_root(&child_info, state_version);
			if empty_hash[..] == child_root[..] {
				top.remove(child_info.prefixed_storage_key().as_slice());
			} else {
				top.insert(child_info.prefixed_storage_key().into_inner(), child_root);
			}
		}

		match state_version {
			StateVersion::V0 => LayoutV0::<Blake2Hasher>::trie_root(top).as_ref().into(),
			StateVersion::V1 => LayoutV1::<Blake2Hasher>::trie_root(top).as_ref().into(),
		}
	}
src/overlayed_changes/mod.rs (line 588)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
	pub fn storage_root<H: Hasher, B: Backend<H>>(
		&self,
		backend: &B,
		cache: &mut StorageTransactionCache<B::Transaction, H>,
		state_version: StateVersion,
	) -> H::Out
	where
		H::Out: Ord + Encode,
	{
		let delta = self.changes().map(|(k, v)| (&k[..], v.value().map(|v| &v[..])));
		let child_delta = self.children().map(|(changes, info)| {
			(info, changes.map(|(k, v)| (&k[..], v.value().map(|v| &v[..]))))
		});

		let (root, transaction) = backend.full_storage_root(delta, child_delta, state_version);

		cache.transaction = Some(transaction);
		cache.transaction_storage_root = Some(root);

		root
	}

Get an optional iterator over all child changes stored under the supplied key.

Examples found in repository?
src/basic.rs (line 282)
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
	fn child_storage_root(
		&mut self,
		child_info: &ChildInfo,
		state_version: StateVersion,
	) -> Vec<u8> {
		if let Some((data, child_info)) = self.overlay.child_changes(child_info.storage_key()) {
			let delta =
				data.into_iter().map(|(k, v)| (k.as_ref(), v.value().map(|v| v.as_slice())));
			crate::in_memory_backend::new_in_mem::<Blake2Hasher, HashKey<_>>()
				.child_storage_root(&child_info, delta, state_version)
				.0
		} else {
			empty_child_trie_root::<LayoutV1<Blake2Hasher>>()
		}
		.encode()
	}
More examples
Hide additional examples
src/ext.rs (line 581)
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
	fn child_storage_root(
		&mut self,
		child_info: &ChildInfo,
		state_version: StateVersion,
	) -> Vec<u8> {
		let _guard = guard();
		let storage_key = child_info.storage_key();
		let prefixed_storage_key = child_info.prefixed_storage_key();
		if self.storage_transaction_cache.transaction_storage_root.is_some() {
			let root = self
				.storage(prefixed_storage_key.as_slice())
				.and_then(|k| Decode::decode(&mut &k[..]).ok())
				// V1 is equivalent to V0 on empty root.
				.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);
			trace!(
				target: "state",
				method = "ChildStorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				child_info = %HexDisplay::from(&storage_key),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			root.encode()
		} else {
			let root = if let Some((changes, info)) = self.overlay.child_changes(storage_key) {
				let delta = changes.map(|(k, v)| (k.as_ref(), v.value().map(AsRef::as_ref)));
				Some(self.backend.child_storage_root(info, delta, state_version))
			} else {
				None
			};

			if let Some((root, is_empty, _)) = root {
				let root = root.encode();
				// We store update in the overlay in order to be able to use
				// 'self.storage_transaction' cache. This is brittle as it rely on Ext only querying
				// the trie backend for storage root.
				// A better design would be to manage 'child_storage_transaction' in a
				// similar way as 'storage_transaction' but for each child trie.
				if is_empty {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), None);
				} else {
					self.overlay.set_storage(prefixed_storage_key.into_inner(), Some(root.clone()));
				}

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root
			} else {
				// empty overlay
				let root = self
					.storage(prefixed_storage_key.as_slice())
					.and_then(|k| Decode::decode(&mut &k[..]).ok())
					// V1 is equivalent to V0 on empty root.
					.unwrap_or_else(empty_child_trie_root::<LayoutV1<H>>);

				trace!(
					target: "state",
					method = "ChildStorageRoot",
					ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
					child_info = %HexDisplay::from(&storage_key),
					storage_root = %HexDisplay::from(&root.as_ref()),
					cached = false,
				);

				root.encode()
			}
		}
	}

Get an list of all index operations.

Convert this instance with all changes into a StorageChanges instance.

Drain all changes into a StorageChanges instance. Leave empty overlay in place.

Examples found in repository?
src/testing.rs (lines 182-186)
181
182
183
184
185
186
187
188
189
190
191
	pub fn commit_all(&mut self) -> Result<(), String> {
		let changes = self.overlay.drain_storage_changes::<_, _>(
			&self.backend,
			&mut Default::default(),
			self.state_version,
		)?;

		self.backend
			.apply_transaction(changes.transaction_storage_root, changes.transaction);
		Ok(())
	}
More examples
Hide additional examples
src/overlayed_changes/mod.rs (line 509)
500
501
502
503
504
505
506
507
508
509
510
	pub fn into_storage_changes<B: Backend<H>, H: Hasher>(
		mut self,
		backend: &B,
		mut cache: StorageTransactionCache<B::Transaction, H>,
		state_version: StateVersion,
	) -> Result<StorageChanges<B::Transaction, H>, DefaultError>
	where
		H::Out: Ord + Encode + 'static,
	{
		self.drain_storage_changes(backend, &mut cache, state_version)
	}
src/ext.rs (lines 682-686)
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
	fn wipe(&mut self) {
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.rollback_transaction().expect(BENCHMARKING_FN);
		}
		self.overlay
			.drain_storage_changes(
				self.backend,
				self.storage_transaction_cache,
				Default::default(), // using any state
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend.wipe().expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

	fn commit(&mut self) {
		// Bench always use latest state.
		let state_version = StateVersion::default();
		for _ in 0..self.overlay.transaction_depth() {
			self.overlay.commit_transaction().expect(BENCHMARKING_FN);
		}
		let changes = self
			.overlay
			.drain_storage_changes(self.backend, self.storage_transaction_cache, state_version)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.backend
			.commit(
				changes.transaction_storage_root,
				changes.transaction,
				changes.main_storage_changes,
				changes.child_storage_changes,
			)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		self.mark_dirty();
		self.overlay
			.enter_runtime()
			.expect("We have reset the overlay above, so we can not be in the runtime; qed");
	}

Generate the storage root using backend and all changes as seen by the current transaction.

Returns the storage root and caches storage transaction in the given cache.

Examples found in repository?
src/ext.rs (line 546)
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
	fn storage_root(&mut self, state_version: StateVersion) -> Vec<u8> {
		let _guard = guard();
		if let Some(ref root) = self.storage_transaction_cache.transaction_storage_root {
			trace!(
				target: "state",
				method = "StorageRoot",
				ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
				storage_root = %HexDisplay::from(&root.as_ref()),
				cached = true,
			);
			return root.encode()
		}

		let root =
			self.overlay
				.storage_root(self.backend, self.storage_transaction_cache, state_version);
		trace!(
			target: "state",
			method = "StorageRoot",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			storage_root = %HexDisplay::from(&root.as_ref()),
			cached = false,
		);
		root.encode()
	}
More examples
Hide additional examples
src/overlayed_changes/mod.rs (line 524)
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
	pub fn drain_storage_changes<B: Backend<H>, H: Hasher>(
		&mut self,
		backend: &B,
		cache: &mut StorageTransactionCache<B::Transaction, H>,
		state_version: StateVersion,
	) -> Result<StorageChanges<B::Transaction, H>, DefaultError>
	where
		H::Out: Ord + Encode + 'static,
	{
		// If the transaction does not exist, we generate it.
		if cache.transaction.is_none() {
			self.storage_root(backend, cache, state_version);
		}

		let (transaction, transaction_storage_root) = cache
			.transaction
			.take()
			.and_then(|t| cache.transaction_storage_root.take().map(|tr| (t, tr)))
			.expect("Transaction was be generated as part of `storage_root`; qed");

		let (main_storage_changes, child_storage_changes) = self.drain_committed();
		let offchain_storage_changes = self.offchain_drain_committed().collect();

		#[cfg(feature = "std")]
		let transaction_index_changes = std::mem::take(&mut self.transaction_index_ops);

		Ok(StorageChanges {
			main_storage_changes: main_storage_changes.collect(),
			child_storage_changes: child_storage_changes
				.map(|(sk, it)| (sk, it.0.collect()))
				.collect(),
			offchain_storage_changes,
			transaction,
			transaction_storage_root,
			#[cfg(feature = "std")]
			transaction_index_changes,
		})
	}

Returns an iterator over the keys (in lexicographic order) following key (excluding key) alongside its value.

Examples found in repository?
src/basic.rs (line 180)
179
180
181
	fn next_storage_key(&self, key: &[u8]) -> Option<StorageKey> {
		self.overlay.iter_after(key).find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}
More examples
Hide additional examples
src/ext.rs (line 314)
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
	fn next_storage_key(&self, key: &[u8]) -> Option<StorageKey> {
		let mut next_backend_key =
			self.backend.next_storage_key(key).expect(EXT_NOT_ALLOWED_TO_FAIL);
		let mut overlay_changes = self.overlay.iter_after(key).peekable();

		match (&next_backend_key, overlay_changes.peek()) {
			(_, None) => next_backend_key,
			(Some(_), Some(_)) => {
				for overlay_key in overlay_changes {
					let cmp = next_backend_key.as_deref().map(|v| v.cmp(overlay_key.0));

					// If `backend_key` is less than the `overlay_key`, we found out next key.
					if cmp == Some(Ordering::Less) {
						return next_backend_key
					} else if overlay_key.1.value().is_some() {
						// If there exists a value for the `overlay_key` in the overlay
						// (aka the key is still valid), it means we have found our next key.
						return Some(overlay_key.0.to_vec())
					} else if cmp == Some(Ordering::Equal) {
						// If the `backend_key` and `overlay_key` are equal, it means that we need
						// to search for the next backend key, because the overlay has overwritten
						// this key.
						next_backend_key = self
							.backend
							.next_storage_key(overlay_key.0)
							.expect(EXT_NOT_ALLOWED_TO_FAIL);
					}
				}

				next_backend_key
			},
			(None, Some(_)) => {
				// Find the next overlay key that has a value attached.
				overlay_changes.find_map(|k| k.1.value().as_ref().map(|_| k.0.to_vec()))
			},
		}
	}

Returns an iterator over the keys (in lexicographic order) following key (excluding key) alongside its value for the given storage_key child.

Examples found in repository?
src/basic.rs (line 185)
183
184
185
186
187
	fn next_child_storage_key(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageKey> {
		self.overlay
			.child_iter_after(child_info.storage_key(), key)
			.find_map(|(k, v)| v.value().map(|_| k.to_vec()))
	}
More examples
Hide additional examples
src/ext.rs (line 355)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
	fn next_child_storage_key(&self, child_info: &ChildInfo, key: &[u8]) -> Option<StorageKey> {
		let mut next_backend_key = self
			.backend
			.next_child_storage_key(child_info, key)
			.expect(EXT_NOT_ALLOWED_TO_FAIL);
		let mut overlay_changes =
			self.overlay.child_iter_after(child_info.storage_key(), key).peekable();

		match (&next_backend_key, overlay_changes.peek()) {
			(_, None) => next_backend_key,
			(Some(_), Some(_)) => {
				for overlay_key in overlay_changes {
					let cmp = next_backend_key.as_deref().map(|v| v.cmp(overlay_key.0));

					// If `backend_key` is less than the `overlay_key`, we found out next key.
					if cmp == Some(Ordering::Less) {
						return next_backend_key
					} else if overlay_key.1.value().is_some() {
						// If there exists a value for the `overlay_key` in the overlay
						// (aka the key is still valid), it means we have found our next key.
						return Some(overlay_key.0.to_vec())
					} else if cmp == Some(Ordering::Equal) {
						// If the `backend_key` and `overlay_key` are equal, it means that we need
						// to search for the next backend key, because the overlay has overwritten
						// this key.
						next_backend_key = self
							.backend
							.next_child_storage_key(child_info, overlay_key.0)
							.expect(EXT_NOT_ALLOWED_TO_FAIL);
					}
				}

				next_backend_key
			},
			(None, Some(_)) => {
				// Find the next overlay key that has a value attached.
				overlay_changes.find_map(|k| k.1.value().as_ref().map(|_| k.0.to_vec()))
			},
		}
	}

Read only access ot offchain overlay.

Write a key value pair to the offchain storage overlay.

Examples found in repository?
src/ext.rs (line 180)
179
180
181
	fn set_offchain_storage(&mut self, key: &[u8], value: Option<&[u8]>) {
		self.overlay.set_offchain_storage(key, value)
	}

Add transaction index operation.

Examples found in repository?
src/ext.rs (lines 643-647)
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
	fn storage_index_transaction(&mut self, index: u32, hash: &[u8], size: u32) {
		trace!(
			target: "state",
			method = "IndexTransaction",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
			%size,
		);

		self.overlay.add_transaction_index(IndexOperation::Insert {
			extrinsic: index,
			hash: hash.to_vec(),
			size,
		});
	}

	/// Renew existing piece of data storage.
	fn storage_renew_transaction_index(&mut self, index: u32, hash: &[u8]) {
		trace!(
			target: "state",
			method = "RenewTransactionIndex",
			ext_id = %HexDisplay::from(&self.id.to_le_bytes()),
			%index,
			tx_hash = %HexDisplay::from(&hash),
		);

		self.overlay
			.add_transaction_index(IndexOperation::Renew { extrinsic: index, hash: hash.to_vec() });
	}

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
Converts to this type from the input type.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Get a reference to the inner from the outer.

Get a mutable reference to the inner from the outer.

Should always be Self
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The counterpart to unchecked_from.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more