1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
use std::collections::HashMap;
use std::fmt::Debug;

use sov_first_read_last_write_cache::{CacheKey, CacheValue};
use sov_rollup_interface::stf::Event;

use crate::codec::{EncodeKeyLike, StateCodec, StateValueCodec};
use crate::internal_cache::{OrderedReadsAndWrites, StorageInternalCache};
use crate::storage::{StorageKey, StorageValue};
use crate::{Prefix, Storage};

/// A working set accumulates reads and writes on top of the underlying DB,
/// automating witness creation.
pub struct Delta<S: Storage> {
    inner: S,
    witness: S::Witness,
    cache: StorageInternalCache,
}

impl<S: Storage> Delta<S> {
    fn new(inner: S) -> Self {
        Self::with_witness(inner, Default::default())
    }

    fn with_witness(inner: S, witness: S::Witness) -> Self {
        Self {
            inner,
            witness,
            cache: Default::default(),
        }
    }

    fn freeze(&mut self) -> (OrderedReadsAndWrites, S::Witness) {
        let cache = std::mem::take(&mut self.cache);
        let witness = std::mem::take(&mut self.witness);

        (cache.into(), witness)
    }
}

impl<S: Storage> Debug for Delta<S> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Delta").finish()
    }
}

impl<S: Storage> StateReaderAndWriter for Delta<S> {
    fn get(&mut self, key: &StorageKey) -> Option<StorageValue> {
        self.cache.get_or_fetch(key, &self.inner, &self.witness)
    }

    fn set(&mut self, key: &StorageKey, value: StorageValue) {
        self.cache.set(key, value)
    }

    fn delete(&mut self, key: &StorageKey) {
        self.cache.delete(key)
    }
}

type RevertableWrites = HashMap<CacheKey, Option<CacheValue>>;

/// This structure is responsible for storing the `read-write` set
/// and is obtained from the `WorkingSet` by using either the `commit` or `revert` method.
pub struct StateCheckpoint<S: Storage> {
    delta: Delta<S>,
    accessory_delta: AccessoryDelta<S>,
}

impl<S: Storage> StateCheckpoint<S> {
    pub fn new(inner: S) -> Self {
        Self {
            delta: Delta::new(inner.clone()),
            accessory_delta: AccessoryDelta::new(inner),
        }
    }

    pub fn get(&mut self, key: &StorageKey) -> Option<StorageValue> {
        self.delta.get(key)
    }

    pub fn with_witness(inner: S, witness: S::Witness) -> Self {
        Self {
            delta: Delta::with_witness(inner.clone(), witness),
            accessory_delta: AccessoryDelta::new(inner),
        }
    }

    pub fn to_revertable(self) -> WorkingSet<S> {
        WorkingSet {
            delta: RevertableWriter::new(self.delta),
            accessory_delta: RevertableWriter::new(self.accessory_delta),
            events: Default::default(),
        }
    }

    pub fn freeze(&mut self) -> (OrderedReadsAndWrites, S::Witness) {
        self.delta.freeze()
    }

    pub fn freeze_non_provable(&mut self) -> OrderedReadsAndWrites {
        self.accessory_delta.freeze()
    }
}

struct AccessoryDelta<S: Storage> {
    // This inner storage is never accessed inside the zkVM because reads are
    // not allowed, so it can result as dead code.
    #[allow(dead_code)]
    storage: S,
    writes: RevertableWrites,
}

impl<S: Storage> AccessoryDelta<S> {
    fn new(storage: S) -> Self {
        Self {
            storage,
            writes: Default::default(),
        }
    }

    fn freeze(&mut self) -> OrderedReadsAndWrites {
        let mut reads_and_writes = OrderedReadsAndWrites::default();
        let writes = std::mem::take(&mut self.writes);

        for write in writes {
            reads_and_writes.ordered_writes.push((write.0, write.1));
        }

        reads_and_writes
    }
}

impl<S: Storage> StateReaderAndWriter for AccessoryDelta<S> {
    fn get(&mut self, key: &StorageKey) -> Option<StorageValue> {
        let cache_key = key.to_cache_key();
        if let Some(value) = self.writes.get(&cache_key) {
            return value.clone().map(Into::into);
        }
        self.storage.get_accessory(key)
    }

    fn set(&mut self, key: &StorageKey, value: StorageValue) {
        self.writes
            .insert(key.to_cache_key(), Some(value.into_cache_value()));
    }

    fn delete(&mut self, key: &StorageKey) {
        self.writes.insert(key.to_cache_key(), None);
    }
}

/// This structure contains the read-write set and the events collected during the execution of a transaction.
/// There are two ways to convert it into a StateCheckpoint:
/// 1. By using the checkpoint() method, where all the changes are added to the underlying StateCheckpoint.
/// 2. By using the revert method, where the most recent changes are reverted and the previous `StateCheckpoint` is returned.
pub struct WorkingSet<S: Storage> {
    delta: RevertableWriter<Delta<S>>,
    accessory_delta: RevertableWriter<AccessoryDelta<S>>,
    events: Vec<Event>,
}

impl<S: Storage> StateReaderAndWriter for WorkingSet<S> {
    fn get(&mut self, key: &StorageKey) -> Option<StorageValue> {
        self.delta.get(key)
    }

    fn set(&mut self, key: &StorageKey, value: StorageValue) {
        self.delta.set(key, value)
    }

    fn delete(&mut self, key: &StorageKey) {
        self.delta.delete(key)
    }
}

/// A wrapper over [`WorkingSet`] that only allows access to the accessory
/// state (non-JMT state).
pub struct AccessoryWorkingSet<'a, S: Storage> {
    ws: &'a mut WorkingSet<S>,
}

impl<'a, S: Storage> StateReaderAndWriter for AccessoryWorkingSet<'a, S> {
    fn get(&mut self, key: &StorageKey) -> Option<StorageValue> {
        if !cfg!(feature = "native") {
            None
        } else {
            self.ws.accessory_delta.get(key)
        }
    }

    fn set(&mut self, key: &StorageKey, value: StorageValue) {
        self.ws.accessory_delta.set(key, value)
    }

    fn delete(&mut self, key: &StorageKey) {
        self.ws.accessory_delta.delete(key)
    }
}

struct RevertableWriter<T> {
    inner: T,
    writes: HashMap<CacheKey, Option<CacheValue>>,
}

impl<T: Debug> Debug for RevertableWriter<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("RevertableWriter")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<T> RevertableWriter<T>
where
    T: StateReaderAndWriter,
{
    fn new(inner: T) -> Self {
        Self {
            inner,
            writes: Default::default(),
        }
    }

    fn commit(mut self) -> T {
        for (k, v) in self.writes.into_iter() {
            if let Some(v) = v {
                self.inner.set(&k.into(), v.into());
            } else {
                self.inner.delete(&k.into());
            }
        }

        self.inner
    }

    fn revert(self) -> T {
        self.inner
    }
}

impl<T: StateReaderAndWriter> StateReaderAndWriter for RevertableWriter<T> {
    fn delete(&mut self, key: &StorageKey) {
        self.writes.insert(key.to_cache_key(), None);
    }

    fn get(&mut self, key: &StorageKey) -> Option<StorageValue> {
        if let Some(value) = self.writes.get(&key.to_cache_key()) {
            value.as_ref().cloned().map(Into::into)
        } else {
            self.inner.get(key)
        }
    }

    fn set(&mut self, key: &StorageKey, value: StorageValue) {
        self.writes
            .insert(key.to_cache_key(), Some(value.into_cache_value()));
    }
}

impl<S: Storage> WorkingSet<S> {
    pub fn new(inner: S) -> Self {
        StateCheckpoint::new(inner).to_revertable()
    }

    pub fn accessory_state(&mut self) -> AccessoryWorkingSet<S> {
        AccessoryWorkingSet { ws: self }
    }

    pub fn with_witness(inner: S, witness: S::Witness) -> Self {
        StateCheckpoint::with_witness(inner, witness).to_revertable()
    }

    pub fn checkpoint(self) -> StateCheckpoint<S> {
        StateCheckpoint {
            delta: self.delta.commit(),
            accessory_delta: self.accessory_delta.commit(),
        }
    }

    pub fn revert(self) -> StateCheckpoint<S> {
        StateCheckpoint {
            delta: self.delta.revert(),
            accessory_delta: self.accessory_delta.revert(),
        }
    }

    pub fn add_event(&mut self, key: &str, value: &str) {
        self.events.push(Event::new(key, value));
    }

    pub fn take_events(&mut self) -> Vec<Event> {
        std::mem::take(&mut self.events)
    }

    pub fn events(&self) -> &[Event] {
        &self.events
    }

    pub fn backing(&self) -> &S {
        &self.delta.inner.inner
    }
}

pub(crate) trait StateReaderAndWriter {
    fn get(&mut self, key: &StorageKey) -> Option<StorageValue>;

    fn set(&mut self, key: &StorageKey, value: StorageValue);

    fn delete(&mut self, key: &StorageKey);

    fn set_value<Q, K, V, Codec>(
        &mut self,
        prefix: &Prefix,
        storage_key: &Q,
        value: &V,
        codec: &Codec,
    ) where
        Q: ?Sized,
        Codec: StateCodec,
        Codec::KeyCodec: EncodeKeyLike<Q, K>,
        Codec::ValueCodec: StateValueCodec<V>,
    {
        let storage_key = StorageKey::new(prefix, storage_key, codec.key_codec());
        let storage_value = StorageValue::new(value, codec.value_codec());
        self.set(&storage_key, storage_value);
    }

    fn set_singleton<V, Codec>(&mut self, prefix: &Prefix, value: &V, codec: &Codec)
    where
        Codec: StateCodec,
        Codec::ValueCodec: StateValueCodec<V>,
    {
        let storage_key = StorageKey::singleton(prefix);
        let storage_value = StorageValue::new(value, codec.value_codec());
        self.set(&storage_key, storage_value);
    }

    fn get_decoded<V, Codec>(&mut self, storage_key: &StorageKey, codec: &Codec) -> Option<V>
    where
        Codec: StateCodec,
        Codec::ValueCodec: StateValueCodec<V>,
    {
        let storage_value = self.get(storage_key)?;

        Some(
            codec
                .value_codec()
                .decode_value_unwrap(storage_value.value()),
        )
    }

    fn get_value<Q, K, V, Codec>(
        &mut self,
        prefix: &Prefix,
        storage_key: &Q,
        codec: &Codec,
    ) -> Option<V>
    where
        Q: ?Sized,
        Codec: StateCodec,
        Codec::KeyCodec: EncodeKeyLike<Q, K>,
        Codec::ValueCodec: StateValueCodec<V>,
    {
        let storage_key = StorageKey::new(prefix, storage_key, codec.key_codec());
        self.get_decoded(&storage_key, codec)
    }

    fn get_singleton<V, Codec>(&mut self, prefix: &Prefix, codec: &Codec) -> Option<V>
    where
        Codec: StateCodec,
        Codec::ValueCodec: StateValueCodec<V>,
    {
        let storage_key = StorageKey::singleton(prefix);
        self.get_decoded(&storage_key, codec)
    }

    fn remove_value<Q, K, V, Codec>(
        &mut self,
        prefix: &Prefix,
        storage_key: &Q,
        codec: &Codec,
    ) -> Option<V>
    where
        Q: ?Sized,
        Codec: StateCodec,
        Codec::KeyCodec: EncodeKeyLike<Q, K>,
        Codec::ValueCodec: StateValueCodec<V>,
    {
        let storage_key = StorageKey::new(prefix, storage_key, codec.key_codec());
        let storage_value = self.get_decoded(&storage_key, codec)?;
        self.delete(&storage_key);
        Some(storage_value)
    }

    fn remove_singleton<V, Codec>(&mut self, prefix: &Prefix, codec: &Codec) -> Option<V>
    where
        Codec: StateCodec,
        Codec::ValueCodec: StateValueCodec<V>,
    {
        let storage_key = StorageKey::singleton(prefix);
        let storage_value = self.get_decoded(&storage_key, codec)?;
        self.delete(&storage_key);
        Some(storage_value)
    }

    fn delete_value<Q, K, Codec>(&mut self, prefix: &Prefix, storage_key: &Q, codec: &Codec)
    where
        Q: ?Sized,
        Codec: StateCodec,
        Codec::KeyCodec: EncodeKeyLike<Q, K>,
    {
        let storage_key = StorageKey::new(prefix, storage_key, codec.key_codec());
        self.delete(&storage_key);
    }

    fn delete_singleton(&mut self, prefix: &Prefix) {
        let storage_key = StorageKey::singleton(prefix);
        self.delete(&storage_key);
    }
}