1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
use thiserror::Error;
use crate::CacheValue;
#[derive(Error, Debug, PartialEq, Eq)]
pub enum MergeError {
#[error("consecutive reads are inconsistent: left read: {left:?}, right read: {right:?}")]
ReadThenRead {
left: Option<CacheValue>,
right: Option<CacheValue>,
},
#[error("the read: {read:?} is in inconsistent with the previous write: {write:?}")]
WriteThenRead {
write: Option<CacheValue>,
read: Option<CacheValue>,
},
}
/// `Access` represents a sequence of events on a particular value.
/// For example, a transaction might read a value, then take some action which causes it to be updated
/// The rules for defining causality are as follows:
/// 1. If a read is preceded by another read, check that the two reads match and discard one.
/// 2. If a read is preceded by a write, check that the value read matches the value written. Discard the read.
/// 3. Otherwise, retain the read.
/// 4. A write is retained unless it is followed by another write.
#[derive(PartialEq, Eq, Debug, Clone)]
pub(crate) enum Access {
Read(Option<CacheValue>),
ReadThenWrite {
original: Option<CacheValue>,
modified: Option<CacheValue>,
},
Write(Option<CacheValue>),
}
impl Access {
pub(crate) fn last_value(&self) -> &Option<CacheValue> {
match self {
Access::Read(value) => value,
Access::ReadThenWrite { modified, .. } => modified,
Access::Write(value) => value,
}
}
pub(crate) fn write_value(&mut self, new_value: Option<CacheValue>) {
match self {
// If we've already read this slot, turn it into a readThenWrite access
Access::Read(original) => {
// If we're resetting the key to its original value, we can just discard the write history
if original == &new_value {
return;
}
// Otherwise, keep track of the original value and the new value
*self = Access::ReadThenWrite {
original: original.take(),
modified: new_value,
};
}
// For ReadThenWrite override the modified value with a new value
Access::ReadThenWrite { original, modified } => {
// If we're resetting the key to its original value, we can just discard the write history
if original == &new_value {
*self = Access::Read(new_value)
} else {
*modified = new_value
}
}
// For Write override the original value with a new value
// We can do this unconditionally, since overwriting a value with itself is a no-op
Access::Write(value) => *value = new_value,
}
}
pub(crate) fn merge(&mut self, rhs: Self) -> Result<(), MergeError> {
// Pattern matching on (`self`, rhs) is a bit cleaner, but would move the `self` inside the tuple.
// We need the `self` later on for *self = Access.. therefore the nested solution.
match self {
Access::Read(left_read) => match rhs {
Access::Read(right_read) => {
if left_read != &right_read {
Err(MergeError::ReadThenRead {
left: left_read.clone(),
right: right_read,
})
} else {
Ok(())
}
}
Access::ReadThenWrite {
original: right_original,
modified: right_modified,
} => {
if left_read != &right_original {
Err(MergeError::ReadThenRead {
left: left_read.clone(),
right: right_original,
})
} else {
*self = Access::ReadThenWrite {
original: right_original,
modified: right_modified,
};
Ok(())
}
}
Access::Write(right_write) => {
*self = Access::ReadThenWrite {
original: left_read.take(),
modified: right_write,
};
Ok(())
}
},
Access::ReadThenWrite {
original: left_original,
modified: left_modified,
} => match rhs {
Access::Read(right_read) => {
if left_modified != &right_read {
Err(MergeError::WriteThenRead {
write: left_modified.clone(),
read: right_read,
})
} else {
Ok(())
}
}
Access::ReadThenWrite {
original: right_original,
modified: right_modified,
} => {
if left_modified != &right_original {
Err(MergeError::WriteThenRead {
write: left_modified.clone(),
read: right_original,
})
} else {
*self = Access::ReadThenWrite {
original: left_original.take(),
modified: right_modified,
};
Ok(())
}
}
Access::Write(right_write) => {
*self = Access::ReadThenWrite {
original: left_original.take(),
modified: right_write,
};
Ok(())
}
},
Access::Write(left_write) => match rhs {
Access::Read(right_read) => {
if left_write != &right_read {
Err(MergeError::WriteThenRead {
write: left_write.clone(),
read: right_read,
})
} else {
Ok(())
}
}
Access::ReadThenWrite {
original: right_original,
modified: right_modified,
} => {
if left_write != &right_original {
Err(MergeError::WriteThenRead {
write: left_write.clone(),
read: right_original,
})
} else {
*self = Access::Write(right_modified);
Ok(())
}
}
Access::Write(right_write) => {
*self = Access::Write(right_write);
Ok(())
}
},
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::utils::test_util::create_value;
#[test]
fn test_access_read_write() {
let original_value = create_value(1);
let mut access = Access::Read(original_value.clone());
// Check: Read => ReadThenWrite transition
{
let new_value = create_value(2);
access.write_value(new_value.clone());
assert_eq!(access.last_value(), &new_value);
assert_eq!(
access,
Access::ReadThenWrite {
original: original_value.clone(),
modified: new_value
}
);
}
// Check: ReadThenWrite => ReadThenWrite transition
{
let new_value = create_value(3);
access.write_value(new_value.clone());
assert_eq!(access.last_value(), &new_value);
assert_eq!(
access,
Access::ReadThenWrite {
original: original_value,
modified: new_value
}
);
}
}
#[test]
fn test_access_write() {
let original_value = create_value(1);
let mut access = Access::Write(original_value.clone());
// Check: Write => Write transition
{
assert_eq!(access.last_value(), &original_value);
let new_value = create_value(3);
access.write_value(new_value.clone());
assert_eq!(access.last_value(), &new_value);
assert_eq!(access, Access::Write(new_value));
}
}
#[test]
fn test_access_merge() {
let first_read = 1;
let mut value = create_value(first_read);
let mut left = Access::Read(value.clone());
let last_write = 10;
for i in 2..last_write + 1 {
left.merge(Access::Read(value.clone())).unwrap();
value = create_value(i);
left.merge(Access::Write(value.clone())).unwrap();
}
assert_eq!(
left,
Access::ReadThenWrite {
original: create_value(first_read),
modified: create_value(last_write)
}
)
}
#[test]
fn test_err_merge_left_read_neq_right_read() {
let first_read = 1;
let value = create_value(first_read);
let left = &mut Access::Read(value.clone());
let second_read = 2;
let value2 = create_value(second_read);
assert_eq!(
left.merge(Access::Read(value2.clone())),
Err(MergeError::ReadThenRead {
left: value,
right: value2,
})
);
}
#[test]
fn test_err_merge_left_read_neq_right_orig() {
let first_read = 1;
let value = create_value(first_read);
let left = &mut Access::Read(value.clone());
let second_read = 2;
let value2 = create_value(second_read);
let right = Access::ReadThenWrite {
original: value2.clone(),
modified: value.clone(),
};
assert_eq!(
left.merge(right),
Err(MergeError::ReadThenRead {
left: value,
right: value2,
})
);
}
#[test]
fn test_err_merge_left_mod_neq_right_read() {
let first_read = 1;
let value = create_value(first_read);
let second_read = 2;
let value2 = create_value(second_read);
let left = &mut Access::ReadThenWrite {
original: value2.clone(),
modified: value.clone(),
};
let right = Access::Read(value2.clone());
assert_eq!(
left.merge(right),
Err(MergeError::WriteThenRead {
write: value,
read: value2,
})
)
}
#[test]
fn test_err_merge_left_mod_neq_right_orig() {
let first_read = 1;
let value = create_value(first_read);
let second_read = 2;
let value2 = create_value(second_read);
let left = &mut Access::ReadThenWrite {
original: value.clone(),
modified: value2.clone(),
};
let right = Access::ReadThenWrite {
original: value.clone(),
modified: value2.clone(),
};
assert_eq!(
left.merge(right),
Err(MergeError::WriteThenRead {
write: value2,
read: value,
})
)
}
#[test]
fn test_err_merge_left_right_neq_right_orig() {
let first_read = 1;
let value = create_value(first_read);
let second_read = 2;
let value2 = create_value(second_read);
let left = &mut Access::Write(value.clone());
let right = Access::ReadThenWrite {
original: value2.clone(),
modified: value.clone(),
};
assert_eq!(
left.merge(right),
Err(MergeError::WriteThenRead {
write: value,
read: value2,
})
)
}
}