1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
use crate::access::{Access, MergeError};
use crate::{CacheKey, CacheValue};
use std::collections::{hash_map::Entry, HashMap};
use thiserror::Error;

#[derive(Error, Debug, Eq, PartialEq)]
pub enum ReadError {
    #[error("inconsistent read, expected: {expected:?}, found: {found:?}")]
    InconsistentRead {
        expected: Option<CacheValue>,
        found: Option<CacheValue>,
    },
}

/// Cache entry can be in three states:
/// - Does not exists, a given key was never inserted in the cache:
///     ValueExists::No
/// - Exists but the value is empty.
///      ValueExists::Yes(None)
/// - Exists and contains a value:
///     ValueExists::Yes(Some(value))
pub enum ValueExists {
    Yes(Option<CacheValue>),
    No,
}

/// CacheLog keeps track of the original and current values of each key accessed.
/// By tracking original values, we can detect and eliminate write patterns where a key is
/// changed temporarily and then reset to its original value
#[derive(Default)]
pub struct CacheLog {
    log: HashMap<CacheKey, Access>,
}

impl CacheLog {
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            log: HashMap::with_capacity(capacity),
        }
    }
}

impl CacheLog {
    pub fn take_writes(self) -> Vec<(CacheKey, Option<CacheValue>)> {
        self.log
            .into_iter()
            .filter_map(|(k, v)| filter_writes(k, v))
            .collect()
    }

    /// Returns a value corresponding to the key.
    pub fn get_value(&self, key: &CacheKey) -> ValueExists {
        match self.log.get(key) {
            Some(value) => ValueExists::Yes(value.last_value().clone()),
            None => ValueExists::No,
        }
    }

    /// The first read for a given key is inserted in the cache. For an existing cache entry
    /// checks if reads are consistent with previous reads/writes.
    pub fn add_read(&mut self, key: CacheKey, value: Option<CacheValue>) -> Result<(), ReadError> {
        match self.log.entry(key) {
            Entry::Occupied(existing) => {
                let last_value = existing.get().last_value().clone();

                if last_value != value {
                    return Err(ReadError::InconsistentRead {
                        expected: last_value,
                        found: value,
                    });
                }
                Ok(())
            }
            Entry::Vacant(vacancy) => {
                vacancy.insert(Access::Read(value));
                Ok(())
            }
        }
    }

    /// Adds a write entry to the cache.
    pub fn add_write(&mut self, key: CacheKey, value: Option<CacheValue>) {
        match self.log.entry(key) {
            Entry::Occupied(mut existing) => {
                existing.get_mut().write_value(value);
            }
            Entry::Vacant(vacancy) => {
                vacancy.insert(Access::Write(value));
            }
        }
    }

    /// Merges two cache logs in a way that preserves the first read (from self) and the last write (from rhs)
    /// for the same key in both caches.
    /// The merge succeeds if the first read in the right cache for a key 'k' is consistent with the last read/write
    /// in the self cache.
    ///
    /// Example:
    ///
    /// Cache1:        Cache2:
    ///     k1 => v1       k1 => v1'
    ///     k2 => v2       k3 => v3
    ///
    /// Merged Cache:
    ///     k1 => v1.merge(v1') <- preserves the first read and the last write for 'k1'
    ///     k2 => v2
    ///     k3 => v3
    pub fn merge_left(&mut self, rhs: Self) -> Result<(), MergeError> {
        self.merge_left_with_filter_map(rhs, Some)
    }

    pub fn merge_writes_left(&mut self, rhs: Self) -> Result<(), MergeError> {
        self.merge_left_with_filter_map(rhs, |(key, access)| match access {
            Access::Read(_) => None,
            Access::ReadThenWrite { modified, .. } => Some((key, Access::Write(modified))),
            Access::Write(w) => Some((key, Access::Write(w))),
        })
    }

    pub fn merge_reads_left(&mut self, rhs: Self) -> Result<(), MergeError> {
        self.merge_left_with_filter_map(rhs, |(key, access)| match access {
            Access::Read(read) => Some((key, Access::Read(read))),
            Access::ReadThenWrite { original, .. } => Some((key, Access::Read(original))),
            Access::Write(_) => None,
        })
    }

    fn merge_left_with_filter_map<F: FnMut((CacheKey, Access)) -> Option<(CacheKey, Access)>>(
        &mut self,
        rhs: Self,
        filter: F,
    ) -> Result<(), MergeError> {
        for (rhs_key, rhs_access) in rhs.log.into_iter().filter_map(filter) {
            match self.log.get_mut(&rhs_key) {
                Some(self_access) => self_access.merge(rhs_access)?,
                None => {
                    self.log.insert(rhs_key, rhs_access);
                }
            };
        }
        Ok(())
    }

    pub fn len(&self) -> usize {
        self.log.len()
    }

    pub fn is_empty(&self) -> bool {
        self.log.is_empty()
    }
}

fn filter_writes(k: CacheKey, access: Access) -> Option<(CacheKey, Option<CacheValue>)> {
    match access {
        Access::Read(_) => None,
        Access::ReadThenWrite { modified, .. } => Some((k, modified)),
        Access::Write(write) => Some((k, write)),
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::utils::test_util::{create_key, create_value};
    use proptest::prelude::*;

    impl ValueExists {
        fn get(self) -> Option<CacheValue> {
            match self {
                ValueExists::Yes(value) => value,
                ValueExists::No => unreachable!(),
            }
        }
    }

    #[test]
    fn test_cache_read_write() {
        let mut cache_log = CacheLog::default();
        let key = create_key(1);

        {
            let value = create_value(2);

            cache_log.add_read(key.clone(), value.clone()).unwrap();
            let value_from_cache = cache_log.get_value(&key).get();
            assert_eq!(value_from_cache, value);
        }

        {
            let value = create_value(3);

            cache_log.add_write(key.clone(), value.clone());

            let value_from_cache = cache_log.get_value(&key).get();
            assert_eq!(value_from_cache, value);

            cache_log.add_read(key.clone(), value.clone()).unwrap();

            let value_from_cache = cache_log.get_value(&key).get();
            assert_eq!(value_from_cache, value);
        }
    }

    #[derive(PartialEq, Eq, Clone, Debug)]
    pub(crate) struct CacheEntry {
        key: CacheKey,
        value: Option<CacheValue>,
    }

    impl CacheEntry {
        fn new(key: CacheKey, value: Option<CacheValue>) -> Self {
            Self { key, value }
        }
    }

    fn new_cache_entry(key: u8, value: u8) -> CacheEntry {
        CacheEntry::new(create_key(key), create_value(value))
    }

    #[derive(Clone)]
    enum ReadWrite {
        Read(CacheEntry),
        Write(CacheEntry),
    }

    impl ReadWrite {
        fn get_value(self) -> CacheEntry {
            match self {
                ReadWrite::Read(r) => r,
                ReadWrite::Write(w) => w,
            }
        }

        fn check_cache_consistency(self, rhs: Self, merged: &CacheLog) {
            match (self, rhs) {
                (ReadWrite::Read(left_read), ReadWrite::Read(right_read)) => {
                    assert_eq!(left_read, right_read);
                    let value = merged.get_value(&left_read.key).get();
                    assert_eq!(left_read.value, value)
                }
                (ReadWrite::Read(_), ReadWrite::Write(right_write)) => {
                    let value = merged.get_value(&right_write.key).get();
                    assert_eq!(right_write.value, value)
                }
                (ReadWrite::Write(left_write), ReadWrite::Read(right_write)) => {
                    assert_eq!(left_write, right_write);
                    let value = merged.get_value(&left_write.key).get();
                    assert_eq!(left_write.value, value)
                }
                (ReadWrite::Write(_), ReadWrite::Write(right_write)) => {
                    let value = merged.get_value(&right_write.key).get();
                    assert_eq!(right_write.value, value)
                }
            }
        }
    }

    impl CacheLog {
        fn add_to_cache(&mut self, rw: ReadWrite) -> Result<(), ReadError> {
            match rw {
                ReadWrite::Read(r) => self.add_read(r.key, r.value),
                ReadWrite::Write(w) => {
                    self.add_write(w.key, w.value);
                    Ok(())
                }
            }
        }
    }

    #[derive(Clone)]
    struct TestCase {
        left: Option<ReadWrite>,
        right: Option<ReadWrite>,
    }

    #[test]
    fn test_add_read() {
        let mut cache = CacheLog::default();

        let entry = new_cache_entry(1, 1);

        let res = cache.add_read(entry.key, entry.value);
        assert!(res.is_ok());

        let entry = new_cache_entry(2, 1);
        let res = cache.add_read(entry.key, entry.value);
        assert!(res.is_ok());

        let entry = new_cache_entry(1, 2);
        let res = cache.add_read(entry.key, entry.value);

        assert_eq!(
            res,
            Err(ReadError::InconsistentRead {
                expected: create_value(1),
                found: create_value(2)
            })
        )
    }

    #[test]
    fn test_merge_ok() {
        let test_cases = vec![
            TestCase {
                left: Some(ReadWrite::Read(new_cache_entry(1, 11))),
                right: Some(ReadWrite::Read(new_cache_entry(1, 11))),
            },
            TestCase {
                left: Some(ReadWrite::Read(new_cache_entry(2, 12))),
                right: Some(ReadWrite::Write(new_cache_entry(2, 22))),
            },
            TestCase {
                left: Some(ReadWrite::Write(new_cache_entry(3, 13))),
                right: Some(ReadWrite::Write(new_cache_entry(3, 23))),
            },
            TestCase {
                left: Some(ReadWrite::Write(new_cache_entry(4, 14))),
                right: None,
            },
            TestCase {
                left: None,
                right: Some(ReadWrite::Read(new_cache_entry(5, 25))),
            },
            TestCase {
                left: None,
                right: Some(ReadWrite::Write(new_cache_entry(6, 25))),
            },
            TestCase {
                left: Some(ReadWrite::Write(new_cache_entry(7, 17))),
                right: Some(ReadWrite::Read(new_cache_entry(7, 17))),
            },
        ];

        test_merge_ok_helper(test_cases);
    }

    #[test]
    fn test_merge_fail() {
        let test_cases = vec![
            TestCase {
                left: Some(ReadWrite::Read(new_cache_entry(1, 11))),
                // The read is inconsistent with the previous read.
                right: Some(ReadWrite::Read(new_cache_entry(1, 12))),
            },
            TestCase {
                left: Some(ReadWrite::Write(new_cache_entry(2, 12))),
                // The read is inconsistent with the previous write.
                right: Some(ReadWrite::Read(new_cache_entry(2, 22))),
            },
        ];

        let result = test_merge_helper(test_cases);
        assert!(result.is_err());
    }

    proptest! {
        #[test]
        fn test_merge_fuzz(s: u8) {
            let num_cases = 15;
            let mut testvec = Vec::with_capacity(num_cases);

            for i in 0..num_cases {
                testvec.push( s.wrapping_add(i as u8));
            }

            let test_cases = vec![
                TestCase {
                    left: Some(ReadWrite::Read(new_cache_entry(testvec[0], testvec[1]))),
                    right: Some(ReadWrite::Read(new_cache_entry(testvec[0], testvec[1]))),
                },
                TestCase {
                    left: Some(ReadWrite::Read(new_cache_entry(testvec[2], testvec[3]))),
                    right: Some(ReadWrite::Write(new_cache_entry(testvec[2], testvec[4]))),
                },
                TestCase {
                    left: Some(ReadWrite::Write(new_cache_entry(testvec[5], testvec[6]))),
                    right: Some(ReadWrite::Write(new_cache_entry(testvec[5], testvec[7]))),
                },
                TestCase {
                    left: Some(ReadWrite::Write(new_cache_entry(testvec[8], testvec[9]))),
                    right: None,
                },
                TestCase {
                    left: None,
                    right: Some(ReadWrite::Read(new_cache_entry(testvec[10], testvec[11]))),
                },
                TestCase {
                    left: None,
                    right: Some(ReadWrite::Write(new_cache_entry(testvec[12], testvec[11]))),
                },
                TestCase {
                    left: Some(ReadWrite::Write(new_cache_entry(testvec[13], testvec[14]))),
                    right: Some(ReadWrite::Read(new_cache_entry(testvec[13], testvec[14]))),
                },
            ];

            test_merge_ok_helper(test_cases);
        }
    }

    fn test_merge_ok_helper(test_cases: Vec<TestCase>) {
        let result = test_merge_helper(test_cases.clone());
        assert!(result.is_ok());

        let merged = result.unwrap();
        assert_eq!(merged.log.len(), test_cases.len());

        for TestCase { left, right } in test_cases {
            match (left, right) {
                (None, None) => unreachable!(),
                (None, Some(rw)) => {
                    let entry = rw.get_value();
                    let value = merged.get_value(&entry.key).get();
                    assert_eq!(entry.value, value)
                }
                (Some(rw), None) => {
                    let entry = rw.get_value();
                    let value = merged.get_value(&entry.key).get();
                    assert_eq!(entry.value, value)
                }
                (Some(left_rw), Some(right_rw)) => {
                    left_rw.check_cache_consistency(right_rw, &merged);
                }
            }
        }
    }

    fn test_merge_helper(test_cases: Vec<TestCase>) -> Result<CacheLog, MergeError> {
        let mut left_cache = CacheLog::default();
        let mut right_cache = CacheLog::default();

        for TestCase { left, right } in test_cases {
            match (left, right) {
                (None, None) => {}
                (None, Some(rw)) => right_cache.add_to_cache(rw).unwrap(),
                (Some(rw), None) => left_cache.add_to_cache(rw).unwrap(),
                (Some(left_rw), Some(right_rw)) => {
                    left_cache.add_to_cache(left_rw).unwrap();
                    right_cache.add_to_cache(right_rw).unwrap();
                }
            }
        }

        left_cache.merge_left(right_cache)?;
        Ok(left_cache)
    }
}