sortedlist_rs/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
use core::fmt;
use std::{ops::Index, fmt::Debug, vec::IntoIter};


/// A sorted list data structure
/// 
/// # Example
/// 
/// ```
/// use sortedlist_rs::SortedList;
/// 
/// let array = vec![90, 19, 25];
/// let mut sorted_list = SortedList::from(array);
/// 
/// println!("{:?}", sorted_list);
/// // [19, 25, 90]
/// 
/// sorted_list.insert(100);
/// sorted_list.insert(1);
/// sorted_list.insert(20);
/// println!("{:?}", sorted_list);
/// // [1, 19, 20, 25, 90, 100]
/// 
/// let x = sorted_list.remove(3);
/// assert_eq!(25, x);
/// // removed the 3-rd smallest (0-indexed) element.
/// 
/// assert_eq!(&20, sorted_list.kth_smallest(2));
/// 
/// assert_eq!(20, sorted_list[2]);
/// 
/// println!("{:?}", sorted_list);
/// // [1, 19, 20, 90, 100]
/// ```
pub struct SortedList<T>
where T: Ord
{
    _lists: Vec<Vec<T>>,
    _index_tree: Vec<usize>,
    _index_tree_offset: usize,
    _load_factor: usize,
    _upper_load_factor: usize,
    _lower_load_factor: usize,
    _len: usize,
}

/// Private method implementations
impl<T> SortedList<T>
where T: Ord
{
    const DEFAULT_INDEX_TREE_OFFSET: usize = 1<<5;
    const DEFAULT_LOAD_FACTOR: usize = 1_024;
    const DEFAULT_UPPER_LOAD_FACTOR: usize = 2_048;
    const DEFAULT_LOWER_LOAD_FACTOR: usize = 512;

    /// Instantiate an empty SortedList.
    fn _default() -> Self {
        Self {
            _lists: vec![],
            _index_tree: vec![0; 2*Self::DEFAULT_INDEX_TREE_OFFSET],
            _index_tree_offset: Self::DEFAULT_INDEX_TREE_OFFSET,
            _load_factor: Self::DEFAULT_LOAD_FACTOR,
            _upper_load_factor: Self::DEFAULT_UPPER_LOAD_FACTOR,
            _lower_load_factor: Self::DEFAULT_LOWER_LOAD_FACTOR,
            _len: 0
        }
    }

    /// Collapse self._lists\[i]. self._lists\[i].len() must be > 1.
    fn _collapse(&mut self, i: usize) {
        if self._lists.len()<=1 {
            panic!("Attempting to collapse while self._lists contains only {} lists.", self._lists.len());
        }

        
        let left = match i>=1 {
            true => self._lists[i-1].len(),
            false => usize::MAX,
        };

        let right = match i+1<self._lists.len() {
            true => self._lists[i+1].len(),
            false => usize::MAX,
        };

        assert!(left.min(right) < usize::MAX);
        if left<right {
            // collapse to k-1
            let mut removed = self._lists.remove(i);
            self._lists[i-1].append(&mut removed);
        } else {
            let mut removed = self._lists.remove(i+1);
            self._lists[i].append(&mut removed);
        }

        self._rebuild_index_tree();
    }

    /// Expand self._lists\[i]. self._lists\[i].len() must be > self._upper_load_factor in order for worthy expansion.
    fn _expand(&mut self, i: usize) {
        if self._lists[i].len() < self._upper_load_factor {
            panic!("Unnecessary expand at self._lists[{}]", i);
        }

        let size = self._lists[i].len();
        let removed: Vec<T> = self._lists[i].drain(size/2..).collect();
        self._lists.insert(i+1, removed);

        // instead of rebuilding the index segment tree, we should check whether we can "shift" the suffix to the right
        // then update tree at position k and k+1
        // and rebuild the first half of the index tree
        self._rebuild_index_tree();
    }

    /// Rebuild the index segment tree.
    fn _rebuild_index_tree(&mut self) {

        self._index_tree_offset = Self::DEFAULT_INDEX_TREE_OFFSET; // minimal size lower bound
        while self._index_tree_offset < self._lists.len() {
            self._index_tree_offset *= 2;
        }

        self._index_tree.fill(0);
        self._index_tree.resize(2*self._index_tree_offset, 0);

        (0..self._lists.len())
            .for_each(|node| {
                self._index_tree[node + self._index_tree_offset] = self._lists[node].len();

            });

        (1..self._index_tree_offset)
            .rev()
            .for_each(|node| {
                self._index_tree[node] = self._index_tree[2*node] + self._index_tree[2*node+1];
            });
    }

    /// Query the range sum of the index tree
    /// It computes the number of elements stored in self._lists\[ql..qr+1].
    fn _index_tree_sum(&self, ql: usize, qr: usize, opt_node: Option<usize>, opt_l: Option<usize>, opt_r: Option<usize>) -> usize {
        let node = opt_node.unwrap_or(1);
        let l = opt_l.unwrap_or(0);
        let r = opt_r.unwrap_or(self._index_tree_offset - 1);

        if ql<=l && r<=qr {
            return self._index_tree[node];
        }

        if qr<l || r<ql {
            return 0;
        }

        let m = (l+r)/2;
        return self._index_tree_sum(ql, qr, Some(2*node), Some(l), Some(m))
            + self._index_tree_sum(ql, qr, Some(2*node+1), Some(m+1), Some(r));
    }

    /// add val to position k of the underlying array of the segment tree
    fn _index_tree_add(&mut self, i: usize, val: i32) {
        let mut node = self._index_tree_offset + i;
        if val>=0 {
            self._index_tree[node] += val as usize;
        } else {
            self._index_tree[node] -= (-val) as usize;
        }
        node /= 2;

        while node>0 {
            self._index_tree[node] = self._index_tree[2*node] + self._index_tree[2*node+1];
            node /= 2;
        }
    }

    /// Remove self._lists\[i]\[j]. It is assumed that self._lists\[i]\[j] will not go out of bound.
    fn _lists_remove(&mut self, i: usize, j: usize) -> T {
        if i>=self._lists.len() || j>=self._lists[i].len() {
            panic!("List index out of range. Attempting to remove self._lists[{}][{}]", i, j);
        }

        let removed = self._lists[i].remove(j);
        self._len -= 1;

        if self._lists.len()>1 && self._lists[i].len() < self._lower_load_factor {
            self._collapse(i);
        } else {
            self._index_tree_add(i, -1);
        }

        return removed;
    }

    /// Insert `element` into self._lists\[i]. It is assumed that self._lists\[i] is the correct insert position.
    fn _lists_insert(&mut self, i: usize, element: T) {
        // insert ele into self._lists[i]
        // assumptions:
        // 1. self._lists[i] must exist
        // 2. i is the correct position for inserting ele
        let pos =
            match  self._lists[i].binary_search(&element) {
                Ok(p) => p,
                Err(p) => p,
            };

        self._lists[i].insert(pos, element);
        self._len += 1;
        
        if self._lists[i].len() > self._upper_load_factor {
            self._expand(i);
        } else {
            self._index_tree_add(i, 1);
        }
    }

    /// Find the position in self._lists which element should be inserted.
    fn _bisect_right_lists(&self, element: &T) -> usize {
        if &self._lists[0][0] > element {
            return 0;
        }

        let mut lo = 0;
        let mut hi = self._lists.len()-1;
        if &self._lists[hi][0] <= element {
            return hi;
        }

        // self._lists[lo][0] <= element
        // self._lists[hi][0] > element
        let mut mid;
        while lo+1 < hi {
            mid = (lo+hi)/2;
            if &self._lists[mid][0] <= element {
                lo = mid;
            } else {
                hi = mid;
            }
        }

        return lo;
    }

    /// Returns (i,j) such that self._lists\[i]\[j] is the k-th element (0-indexed) of the SortedList.
    fn _locate_kth_element(&self, k: usize) -> (usize, usize) {
        // input k is 0-indexed
        if k>=self._len {
            panic!("SortedList: Index out of range.");
        }

        let is_leaf_node = |u| { u>=self._index_tree_offset };
        let mut cnt = k+1;
        
        let mut node: usize = 1;
        while !is_leaf_node(node) {
            if self._index_tree[2*node]>=cnt {
                node = 2*node;
            } else {                
                cnt -= self._index_tree[2*node];
                node = 2*node+1;
            }
        }

        // return values are 0-indexed
        return (
            node - self._index_tree_offset,
            cnt - 1,
        );
    }

    /// Retrieve an immutable reference of self._lists\[i]\[j].
    fn _at(&self, i: usize, j: usize) -> &T {
        return &self._lists[i][j];
    }

    /// Returns a flattened view of the SortedList.
    fn _flat(&self) -> Vec<&T> {
        self._lists
            .iter()
            .fold(Vec::new(), |mut cur, list| {
                list
                    .iter()
                    .for_each(|element| {
                        cur.push(element);
                    });
                cur
            })
    }
}


/// Public method implementations
impl<T> SortedList<T>
where T: Ord
{
    /// Creates an empty SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list: SortedList<i32> = SortedList::new();
    /// ```
    pub fn new() -> Self {
        Self::_default()
    }

    /// Find the k-th smallest (0-indexed) element in the SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 3]);
    /// assert_eq!(&3, sorted_list.kth_smallest(1));
    /// ```
    pub fn kth_smallest(&self, k: usize) -> &T {
        // k is 0-indexed
        let (i,j) = self._locate_kth_element(k);
        return self._at(i, j);
    }

    /// Clears the SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let mut sorted_list = SortedList::from([10, 2, 3]);
    /// sorted_list.clear();
    /// 
    /// assert_eq!(0, sorted_list.len());
    /// assert_eq!(true, sorted_list.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self._lists.clear();
        self._index_tree.clear();
        self._index_tree.resize(2*Self::DEFAULT_INDEX_TREE_OFFSET, 0);
        self._index_tree_offset = Self::DEFAULT_INDEX_TREE_OFFSET;
        self._len = 0;
    }

    /// Insert `element` into the SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let mut sorted_list = SortedList::new();
    /// sorted_list.insert(10);
    /// sorted_list.insert(6);
    /// sorted_list.insert(99);
    /// 
    /// assert_eq!(3, sorted_list.len());
    /// assert_eq!(6, sorted_list[0]);
    /// assert_eq!(10, sorted_list[1]);
    /// ```
    pub fn insert(&mut self, element: T) {
        if self._len==0 {
            self._lists.push(vec![]);
            self._lists_insert(0, element);
            return;
        }

        let k = self._bisect_right_lists(&element);
        self._lists_insert(k, element);
    }

    /// Pops the k-th smallest (0-indexed) element from the SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let mut sorted_list = SortedList::from([10, 2, 99, 20, 30]);
    /// let popped = sorted_list.remove(3);
    /// 
    /// assert_eq!(30, popped);
    /// ```
    pub fn remove(&mut self, k: usize) -> T {
        let (i,j) = self._locate_kth_element(k);
        return self._lists_remove(i, j);
    }

    /// Binary searches the given element in the SortedList.
    /// Returns Ok(i) for exact match, Err(i) otherwise.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let mut sorted_list = SortedList::from([10, 2, 99, 20, 30]);
    /// 
    /// let result = sorted_list.binary_search(&30);
    /// assert_eq!(Ok(3), result);
    /// 
    /// let result = sorted_list.binary_search(&90);
    /// assert_eq!(Err(4), result);
    /// ```
    pub fn binary_search(&self, element: &T) -> Result<usize, usize> {
        if self._len==0 {
            return Err(0);
        }

        let i: usize = self._bisect_right_lists(element);
        if i==0 {
            return self._lists[i].binary_search(element);
        }

        match self._lists[i].binary_search(element) {
            Ok(pos) => Ok(pos + self._index_tree_sum(0, i-1, None, None, None)),
            Err(pos) => Err(pos + self._index_tree_sum(0, i-1, None, None, None)),
        }
    }

    /// Returns whether the SortedList contains a specific element.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 99, 20]);
    /// 
    /// assert_eq!(true, sorted_list.contains(&10));
    /// assert_eq!(false, sorted_list.contains(&90));
    /// ```
    pub fn contains(&self, element: &T) -> bool {
        match self.binary_search(element) {
            Ok(_) => true,
            _ => false,
        }
    }

    /// Returns the number of elements stored in the SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 99, 20]);
    /// 
    /// assert_eq!(4, sorted_list.len());
    /// ```
    pub fn len(&self) -> usize {
        self._len
    }

    /// Returns whether the SortedList is empty.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let mut sorted_list: SortedList<i32> = SortedList::new();
    /// assert_eq!(true, sorted_list.is_empty());
    /// 
    /// sorted_list.insert(1);
    /// assert_eq!(false, sorted_list.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len()==0
    }

    /// Returns the last element of the SortedList, i.e. the largest element.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 99, 20]);
    /// 
    /// assert_eq!(Some(&99), sorted_list.last());
    /// ```
    pub fn last(&self) -> Option<&T> {
        if self.len()==0 {
            return None;
        }
        return self._lists.last().unwrap().last();
    }

    /// Returns the first element of the SortedList, i.e. the smallest element.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 99, 20]);
    /// 
    /// assert_eq!(Some(&2), sorted_list.first());
    /// ```
    pub fn first(&self) -> Option<&T> {
        if self.len()==0 {
            return None;
        }
        return self._lists.first().unwrap().first();
    }

    /// Returns the element for the given index in the SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 99, 20]);
    /// 
    /// assert_eq!(Some(&20), sorted_list.get(2));
    /// ```
    pub fn get(&self, index: usize) -> Option<&T> {
        if self.len()==0 || self.len()<=index {
            return None;
        }
        return Some(self.kth_smallest(index));
    }

    /// Returns a flattened view of the SortedList.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 99, 20]);
    /// let flattened = sorted_list.flatten();
    /// 
    /// assert_eq!(vec![&2, &10, &20, &99], flattened);
    /// ```
    pub fn flatten(&self) -> Vec<&T> {
        self._flat()
    }

    /// Convert `self` into a new `Vec`.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([10, 2, 99, 20]);
    /// let v = sorted_list.to_vec();
    /// 
    /// assert_eq!(vec![2, 10, 20, 99], v);
    /// ```
    pub fn to_vec(&self) -> Vec<T>
    where T: Clone
    {
        self._lists
            .iter()
            .fold(vec![], |mut cur, list| {
                cur.append(&mut list.to_vec());
                cur
            })
    }
}

impl<T> Default for SortedList<T>
where T: Ord
{
    /// Creates an empty SortedList.
    fn default() -> Self {
        Self::_default()
    }
}

impl<T> Index<usize> for SortedList<T>
where T: Ord
{
    type Output = T;

    /// Access the SortedList for the given index.
    /// 
    /// # Example
    /// 
    /// ```
    /// use sortedlist_rs::SortedList;
    /// 
    /// let sorted_list = SortedList::from([20, 2, 10, 99, 50, 32]);
    /// 
    /// assert_eq!(32, sorted_list[3]);
    /// ```
    fn index(&self, index: usize) -> &Self::Output {
        self.kth_smallest(index)
    }
}

impl<T> From<IntoIter<T>> for SortedList<T>
where T: Ord
{
    /// Creates a SortedList from an IntoIter
    fn from(iter: IntoIter<T>) -> Self {
        let mut array: Vec<T> = iter.collect();
        array.sort();

        // directly construct sorted_list's internals, i.e. _lists, _len
        // This method is way faster than inserting elements one by one
        let sorted_iter = array.into_iter();
        let mut sorted_list = Self::default();
        sorted_list._len = sorted_iter.len();

        sorted_list._lists.push(vec![]);
        let mut last_list_size = 0;

        for element in sorted_iter {
            sorted_list._lists.last_mut().unwrap().push(element);
            last_list_size += 1;
            if last_list_size == sorted_list._load_factor {
                last_list_size = 0;
                sorted_list._lists.push(vec![]);
            }
        }

        sorted_list._rebuild_index_tree();
        sorted_list
    }
}

impl<T> From<Vec<T>> for SortedList<T>
where T: Ord
{
    /// Creates a SortedList from a Vec
    fn from(array: Vec<T>) -> Self {
        Self::from(array.into_iter())
    }
}

impl<T> From<&[T]> for SortedList<T>
where T: Ord + Clone
{
    /// Allocate a SortedList and fill it by cloning `array`'s items.
    fn from(array: &[T]) -> Self {
        Self::from(Vec::from(array))
    }
}

impl<T> From<&mut [T]> for SortedList<T>
where T: Ord + Clone
{
    /// Allocate a SortedList and fill it by cloning `array`'s items.
    fn from(array: &mut [T]) -> Self {
        Self::from(Vec::from(array))
    }
}

impl<T, const N: usize> From<[T;N]> for SortedList<T>
where T: Ord
{
    /// Allocate a SortedList and move `array`'s item into it.
    fn from(array: [T;N]) -> Self {
        Self::from(Vec::from(array))
    }
}

impl<T> fmt::Debug for SortedList<T>
where T: Ord + Debug
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&self._flat(), f)
    }
}

#[cfg(test)]
mod tests {
    use rand::{thread_rng, Rng, seq::SliceRandom};

    use crate::SortedList;


    #[test]
    fn it_works() {
        let x = vec![1,2,3,4,9,8,7,6,5,4];
        let y = vec![1,2,3,4,4,5,6,7,8,9];
        let arr = SortedList::from(x);

        for i in 0..10 {
            assert_eq!(y[i], arr[i]);
        }

    }

    #[test]
    fn random_tests() {
        // Run tests with randomized inputs

        let test_size = 100_000;
        let test_op = 5_000;

        let mut rng = thread_rng();
        let mut array = vec![];
        for _ in 0..test_size {
            let x = rng.gen::<i32>();
            array.push(x);
        }

        // reference sorted list
        let mut copy = array.clone();
        copy.sort();

        // actual sorted list
        let mut sorted_list = SortedList::from(array);

        // Data setup
        for _ in 0..test_op {
            let x = rng.gen::<i32>();
            
            // insert into copy
            let k = match copy.binary_search(&x) {
                Ok(i) => i,
                Err(i) => i,
            };
            copy.insert(k, x);


            // insert into sorted list
            sorted_list.insert(x);
        }

        // Acutal tests
        for _ in 0..test_op+test_size {
            // Test: remove a random index, sorted order is maintained
            let idx = rng.gen_range(0..copy.len());
            let expect = copy.remove(idx);
            let actual = sorted_list.remove(idx);
            assert_eq!(expect, actual);

            // Test: first
            let expect = copy.first();
            let actual = sorted_list.first();
            assert_eq!(expect, actual);

            // Test: last
            let expect = copy.last();
            let actual = sorted_list.last();
            assert_eq!(expect, actual);

            // Test: binary_search
            let x = rng.gen::<i32>();
            let actual = sorted_list.binary_search(&x);
            let expect = copy.binary_search(&x);
            assert_eq!(expect, actual);

            // Test: get
            let index = rng.gen_range(0..copy.len() + 2000);
            let actual = sorted_list.get(index);
            let expect = copy.get(index);
            assert_eq!(expect, actual);

            // Test: len
            let actual = sorted_list.len();
            let expect = copy.len();
            assert_eq!(expect, actual);

            // Test: is_empty
            let actual = sorted_list.is_empty();
            let expect = copy.is_empty();
            assert_eq!(expect, actual);
        }
    }

    #[test]
    fn example() {
        let array = vec![90, 19, 25];
        let mut sorted_list = SortedList::from(array);

        sorted_list.insert(100);
        sorted_list.insert(1);
        sorted_list.insert(20);

        let x = sorted_list.remove(3);
        assert_eq!(25, x);
        assert_eq!(&20, sorted_list.kth_smallest(2));
        assert_eq!(20, sorted_list[2]);
    }

    #[test]
    fn binary_search_test() {
        let array = vec![20; 100_000];
        let sorted_list = SortedList::from(array);
        let x = 50;

        let actual = sorted_list.binary_search(&x);
        let expected: Result<usize, usize> = Err(100_000);

        assert_eq!(actual, expected);
    }

    #[test]
    fn contains_test() {
        let mut sorted_list = SortedList::from([10; 10_000]);
        assert!(sorted_list.contains(&10));
        assert!(!sorted_list.contains(&9));

        sorted_list.insert(9);
        assert!(sorted_list.contains(&9));

        sorted_list.insert(11);
        assert!(sorted_list.contains(&11));
    }

    #[test]
    fn clear_test() {
        // arrange
        let mut sorted_list_1 = SortedList::from([10; 10_000]);
        let mut sorted_list_2 = SortedList::from([1, 3, 4, 2, 0]);

        // act
        sorted_list_1.clear();
        sorted_list_2.clear();

        // assert
        for sorted_list in [sorted_list_1, sorted_list_2] {
            assert!(sorted_list._lists.is_empty());
            for val in &sorted_list._index_tree {
                assert!(val == &0);
            }
            assert!(sorted_list._index_tree.len() == 2*sorted_list._index_tree_offset);
        }
    }

    #[test]
    fn to_vec_test() {
        // arrange
        let mut rng = thread_rng();
        let mut array: Vec<usize> = (0..5_000).collect();
        array.shuffle(&mut rng);

        let sorted_list = SortedList::from(array);

        // act
        let to_vec = sorted_list.to_vec();

        // assert
        assert_eq!((0..5_000).collect::<Vec<usize>>(), to_vec);
    }

    #[test]
    fn flatten_test() {
        // arrange
        let mut rng = thread_rng();
        let mut array: Vec<usize> = (0..5_000).collect();
        array.shuffle(&mut rng);

        let sorted_list = SortedList::from(array);

        // act
        let flatten = sorted_list.flatten();

        // assert
        for i in 0..5_000 {
            assert_eq!(flatten[i], &i);
        }
    }

    #[test]
    fn complex_data_structure_test() {
        // arrange
        let mut array: Vec<Vec<i32>> = vec![];
        for i in (0..2000).rev() {
            array.push((0..i+1).collect());
        }

        // act
        let sorted_list = SortedList::from(array);

        // assert
        for i in 0..2000 {
            let actual: &Vec<i32> = &sorted_list[i];
            let expected = (0..i+1).map(|x| x as i32).collect::<Vec<i32>>();

            assert_eq!(i+1, actual.len());
            for j in 0..actual.len() {
                assert_eq!(actual[j], expected[j]);
            }
        }
    }
}