sortedlist_rs/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
use core::fmt;
use std::{ops::Index, fmt::Debug, vec::IntoIter};
/// A sorted list data structure
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let array = vec![90, 19, 25];
/// let mut sorted_list = SortedList::from(array);
///
/// println!("{:?}", sorted_list);
/// // [19, 25, 90]
///
/// sorted_list.insert(100);
/// sorted_list.insert(1);
/// sorted_list.insert(20);
/// println!("{:?}", sorted_list);
/// // [1, 19, 20, 25, 90, 100]
///
/// let x = sorted_list.remove(3);
/// assert_eq!(25, x);
/// // removed the 3-rd smallest (0-indexed) element.
///
/// assert_eq!(&20, sorted_list.kth_smallest(2));
///
/// assert_eq!(20, sorted_list[2]);
///
/// println!("{:?}", sorted_list);
/// // [1, 19, 20, 90, 100]
/// ```
pub struct SortedList<T>
where T: Ord
{
_lists: Vec<Vec<T>>,
_index_tree: Vec<usize>,
_index_tree_offset: usize,
_load_factor: usize,
_upper_load_factor: usize,
_lower_load_factor: usize,
_len: usize,
}
/// Private method implementations
impl<T> SortedList<T>
where T: Ord
{
const DEFAULT_INDEX_TREE_OFFSET: usize = 1<<5;
const DEFAULT_LOAD_FACTOR: usize = 1_024;
const DEFAULT_UPPER_LOAD_FACTOR: usize = 2_048;
const DEFAULT_LOWER_LOAD_FACTOR: usize = 512;
/// Instantiate an empty SortedList.
fn _default() -> Self {
Self {
_lists: vec![],
_index_tree: vec![0; 2*Self::DEFAULT_INDEX_TREE_OFFSET],
_index_tree_offset: Self::DEFAULT_INDEX_TREE_OFFSET,
_load_factor: Self::DEFAULT_LOAD_FACTOR,
_upper_load_factor: Self::DEFAULT_UPPER_LOAD_FACTOR,
_lower_load_factor: Self::DEFAULT_LOWER_LOAD_FACTOR,
_len: 0
}
}
/// Collapse self._lists\[i]. self._lists\[i].len() must be > 1.
fn _collapse(&mut self, i: usize) {
if self._lists.len()<=1 {
panic!("Attempting to collapse while self._lists contains only {} lists.", self._lists.len());
}
let left = match i>=1 {
true => self._lists[i-1].len(),
false => usize::MAX,
};
let right = match i+1<self._lists.len() {
true => self._lists[i+1].len(),
false => usize::MAX,
};
assert!(left.min(right) < usize::MAX);
if left<right {
// collapse to k-1
let mut removed = self._lists.remove(i);
self._lists[i-1].append(&mut removed);
} else {
let mut removed = self._lists.remove(i+1);
self._lists[i].append(&mut removed);
}
self._rebuild_index_tree();
}
/// Expand self._lists\[i]. self._lists\[i].len() must be > self._upper_load_factor in order for worthy expansion.
fn _expand(&mut self, i: usize) {
if self._lists[i].len() < self._upper_load_factor {
panic!("Unnecessary expand at self._lists[{}]", i);
}
let size = self._lists[i].len();
let removed: Vec<T> = self._lists[i].drain(size/2..).collect();
self._lists.insert(i+1, removed);
// instead of rebuilding the index segment tree, we should check whether we can "shift" the suffix to the right
// then update tree at position k and k+1
// and rebuild the first half of the index tree
self._rebuild_index_tree();
}
/// Rebuild the index segment tree.
fn _rebuild_index_tree(&mut self) {
self._index_tree_offset = Self::DEFAULT_INDEX_TREE_OFFSET; // minimal size lower bound
while self._index_tree_offset < self._lists.len() {
self._index_tree_offset *= 2;
}
self._index_tree.fill(0);
self._index_tree.resize(2*self._index_tree_offset, 0);
(0..self._lists.len())
.for_each(|node| {
self._index_tree[node + self._index_tree_offset] = self._lists[node].len();
});
(1..self._index_tree_offset)
.rev()
.for_each(|node| {
self._index_tree[node] = self._index_tree[2*node] + self._index_tree[2*node+1];
});
}
/// Query the range sum of the index tree
/// It computes the number of elements stored in self._lists\[ql..qr+1].
fn _index_tree_sum(&self, ql: usize, qr: usize, opt_node: Option<usize>, opt_l: Option<usize>, opt_r: Option<usize>) -> usize {
let node = opt_node.unwrap_or(1);
let l = opt_l.unwrap_or(0);
let r = opt_r.unwrap_or(self._index_tree_offset - 1);
if ql<=l && r<=qr {
return self._index_tree[node];
}
if qr<l || r<ql {
return 0;
}
let m = (l+r)/2;
return self._index_tree_sum(ql, qr, Some(2*node), Some(l), Some(m))
+ self._index_tree_sum(ql, qr, Some(2*node+1), Some(m+1), Some(r));
}
/// add val to position k of the underlying array of the segment tree
fn _index_tree_add(&mut self, i: usize, val: i32) {
let mut node = self._index_tree_offset + i;
if val>=0 {
self._index_tree[node] += val as usize;
} else {
self._index_tree[node] -= (-val) as usize;
}
node /= 2;
while node>0 {
self._index_tree[node] = self._index_tree[2*node] + self._index_tree[2*node+1];
node /= 2;
}
}
/// Remove self._lists\[i]\[j]. It is assumed that self._lists\[i]\[j] will not go out of bound.
fn _lists_remove(&mut self, i: usize, j: usize) -> T {
if i>=self._lists.len() || j>=self._lists[i].len() {
panic!("List index out of range. Attempting to remove self._lists[{}][{}]", i, j);
}
let removed = self._lists[i].remove(j);
self._len -= 1;
if self._lists.len()>1 && self._lists[i].len() < self._lower_load_factor {
self._collapse(i);
} else {
self._index_tree_add(i, -1);
}
return removed;
}
/// Insert `element` into self._lists\[i]. It is assumed that self._lists\[i] is the correct insert position.
fn _lists_insert(&mut self, i: usize, element: T) {
// insert ele into self._lists[i]
// assumptions:
// 1. self._lists[i] must exist
// 2. i is the correct position for inserting ele
let pos =
match self._lists[i].binary_search(&element) {
Ok(p) => p,
Err(p) => p,
};
self._lists[i].insert(pos, element);
self._len += 1;
if self._lists[i].len() > self._upper_load_factor {
self._expand(i);
} else {
self._index_tree_add(i, 1);
}
}
/// Find the position in self._lists which element should be inserted.
fn _bisect_right_lists(&self, element: &T) -> usize {
if &self._lists[0][0] > element {
return 0;
}
let mut lo = 0;
let mut hi = self._lists.len()-1;
if &self._lists[hi][0] <= element {
return hi;
}
// self._lists[lo][0] <= element
// self._lists[hi][0] > element
let mut mid;
while lo+1 < hi {
mid = (lo+hi)/2;
if &self._lists[mid][0] <= element {
lo = mid;
} else {
hi = mid;
}
}
return lo;
}
/// Returns (i,j) such that self._lists\[i]\[j] is the k-th element (0-indexed) of the SortedList.
fn _locate_kth_element(&self, k: usize) -> (usize, usize) {
// input k is 0-indexed
if k>=self._len {
panic!("SortedList: Index out of range.");
}
let is_leaf_node = |u| { u>=self._index_tree_offset };
let mut cnt = k+1;
let mut node: usize = 1;
while !is_leaf_node(node) {
if self._index_tree[2*node]>=cnt {
node = 2*node;
} else {
cnt -= self._index_tree[2*node];
node = 2*node+1;
}
}
// return values are 0-indexed
return (
node - self._index_tree_offset,
cnt - 1,
);
}
/// Retrieve an immutable reference of self._lists\[i]\[j].
fn _at(&self, i: usize, j: usize) -> &T {
return &self._lists[i][j];
}
/// Returns a flattened view of the SortedList.
fn _flat(&self) -> Vec<&T> {
self._lists
.iter()
.fold(Vec::new(), |mut cur, list| {
list
.iter()
.for_each(|element| {
cur.push(element);
});
cur
})
}
}
/// Public method implementations
impl<T> SortedList<T>
where T: Ord
{
/// Creates an empty SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list: SortedList<i32> = SortedList::new();
/// ```
pub fn new() -> Self {
Self::_default()
}
/// Find the k-th smallest (0-indexed) element in the SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 3]);
/// assert_eq!(&3, sorted_list.kth_smallest(1));
/// ```
pub fn kth_smallest(&self, k: usize) -> &T {
// k is 0-indexed
let (i,j) = self._locate_kth_element(k);
return self._at(i, j);
}
/// Clears the SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let mut sorted_list = SortedList::from([10, 2, 3]);
/// sorted_list.clear();
///
/// assert_eq!(0, sorted_list.len());
/// assert_eq!(true, sorted_list.is_empty());
/// ```
pub fn clear(&mut self) {
self._lists.clear();
self._index_tree.clear();
self._index_tree.resize(2*Self::DEFAULT_INDEX_TREE_OFFSET, 0);
self._index_tree_offset = Self::DEFAULT_INDEX_TREE_OFFSET;
self._len = 0;
}
/// Insert `element` into the SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let mut sorted_list = SortedList::new();
/// sorted_list.insert(10);
/// sorted_list.insert(6);
/// sorted_list.insert(99);
///
/// assert_eq!(3, sorted_list.len());
/// assert_eq!(6, sorted_list[0]);
/// assert_eq!(10, sorted_list[1]);
/// ```
pub fn insert(&mut self, element: T) {
if self._len==0 {
self._lists.push(vec![]);
self._lists_insert(0, element);
return;
}
let k = self._bisect_right_lists(&element);
self._lists_insert(k, element);
}
/// Pops the k-th smallest (0-indexed) element from the SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let mut sorted_list = SortedList::from([10, 2, 99, 20, 30]);
/// let popped = sorted_list.remove(3);
///
/// assert_eq!(30, popped);
/// ```
pub fn remove(&mut self, k: usize) -> T {
let (i,j) = self._locate_kth_element(k);
return self._lists_remove(i, j);
}
/// Binary searches the given element in the SortedList.
/// Returns Ok(i) for exact match, Err(i) otherwise.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let mut sorted_list = SortedList::from([10, 2, 99, 20, 30]);
///
/// let result = sorted_list.binary_search(&30);
/// assert_eq!(Ok(3), result);
///
/// let result = sorted_list.binary_search(&90);
/// assert_eq!(Err(4), result);
/// ```
pub fn binary_search(&self, element: &T) -> Result<usize, usize> {
if self._len==0 {
return Err(0);
}
let i: usize = self._bisect_right_lists(element);
if i==0 {
return self._lists[i].binary_search(element);
}
match self._lists[i].binary_search(element) {
Ok(pos) => Ok(pos + self._index_tree_sum(0, i-1, None, None, None)),
Err(pos) => Err(pos + self._index_tree_sum(0, i-1, None, None, None)),
}
}
/// Returns whether the SortedList contains a specific element.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 99, 20]);
///
/// assert_eq!(true, sorted_list.contains(&10));
/// assert_eq!(false, sorted_list.contains(&90));
/// ```
pub fn contains(&self, element: &T) -> bool {
match self.binary_search(element) {
Ok(_) => true,
_ => false,
}
}
/// Returns the number of elements stored in the SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 99, 20]);
///
/// assert_eq!(4, sorted_list.len());
/// ```
pub fn len(&self) -> usize {
self._len
}
/// Returns whether the SortedList is empty.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let mut sorted_list: SortedList<i32> = SortedList::new();
/// assert_eq!(true, sorted_list.is_empty());
///
/// sorted_list.insert(1);
/// assert_eq!(false, sorted_list.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len()==0
}
/// Returns the last element of the SortedList, i.e. the largest element.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 99, 20]);
///
/// assert_eq!(Some(&99), sorted_list.last());
/// ```
pub fn last(&self) -> Option<&T> {
if self.len()==0 {
return None;
}
return self._lists.last().unwrap().last();
}
/// Returns the first element of the SortedList, i.e. the smallest element.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 99, 20]);
///
/// assert_eq!(Some(&2), sorted_list.first());
/// ```
pub fn first(&self) -> Option<&T> {
if self.len()==0 {
return None;
}
return self._lists.first().unwrap().first();
}
/// Returns the element for the given index in the SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 99, 20]);
///
/// assert_eq!(Some(&20), sorted_list.get(2));
/// ```
pub fn get(&self, index: usize) -> Option<&T> {
if self.len()==0 || self.len()<=index {
return None;
}
return Some(self.kth_smallest(index));
}
/// Returns a flattened view of the SortedList.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 99, 20]);
/// let flattened = sorted_list.flatten();
///
/// assert_eq!(vec![&2, &10, &20, &99], flattened);
/// ```
pub fn flatten(&self) -> Vec<&T> {
self._flat()
}
/// Convert `self` into a new `Vec`.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([10, 2, 99, 20]);
/// let v = sorted_list.to_vec();
///
/// assert_eq!(vec![2, 10, 20, 99], v);
/// ```
pub fn to_vec(&self) -> Vec<T>
where T: Clone
{
self._lists
.iter()
.fold(vec![], |mut cur, list| {
cur.append(&mut list.to_vec());
cur
})
}
}
impl<T> Default for SortedList<T>
where T: Ord
{
/// Creates an empty SortedList.
fn default() -> Self {
Self::_default()
}
}
impl<T> Index<usize> for SortedList<T>
where T: Ord
{
type Output = T;
/// Access the SortedList for the given index.
///
/// # Example
///
/// ```
/// use sortedlist_rs::SortedList;
///
/// let sorted_list = SortedList::from([20, 2, 10, 99, 50, 32]);
///
/// assert_eq!(32, sorted_list[3]);
/// ```
fn index(&self, index: usize) -> &Self::Output {
self.kth_smallest(index)
}
}
impl<T> From<IntoIter<T>> for SortedList<T>
where T: Ord
{
/// Creates a SortedList from an IntoIter
fn from(iter: IntoIter<T>) -> Self {
let mut array: Vec<T> = iter.collect();
array.sort();
// directly construct sorted_list's internals, i.e. _lists, _len
// This method is way faster than inserting elements one by one
let sorted_iter = array.into_iter();
let mut sorted_list = Self::default();
sorted_list._len = sorted_iter.len();
sorted_list._lists.push(vec![]);
let mut last_list_size = 0;
for element in sorted_iter {
sorted_list._lists.last_mut().unwrap().push(element);
last_list_size += 1;
if last_list_size == sorted_list._load_factor {
last_list_size = 0;
sorted_list._lists.push(vec![]);
}
}
sorted_list._rebuild_index_tree();
sorted_list
}
}
impl<T> From<Vec<T>> for SortedList<T>
where T: Ord
{
/// Creates a SortedList from a Vec
fn from(array: Vec<T>) -> Self {
Self::from(array.into_iter())
}
}
impl<T> From<&[T]> for SortedList<T>
where T: Ord + Clone
{
/// Allocate a SortedList and fill it by cloning `array`'s items.
fn from(array: &[T]) -> Self {
Self::from(Vec::from(array))
}
}
impl<T> From<&mut [T]> for SortedList<T>
where T: Ord + Clone
{
/// Allocate a SortedList and fill it by cloning `array`'s items.
fn from(array: &mut [T]) -> Self {
Self::from(Vec::from(array))
}
}
impl<T, const N: usize> From<[T;N]> for SortedList<T>
where T: Ord
{
/// Allocate a SortedList and move `array`'s item into it.
fn from(array: [T;N]) -> Self {
Self::from(Vec::from(array))
}
}
impl<T> fmt::Debug for SortedList<T>
where T: Ord + Debug
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self._flat(), f)
}
}
#[cfg(test)]
mod tests {
use rand::{thread_rng, Rng, seq::SliceRandom};
use crate::SortedList;
#[test]
fn it_works() {
let x = vec![1,2,3,4,9,8,7,6,5,4];
let y = vec![1,2,3,4,4,5,6,7,8,9];
let arr = SortedList::from(x);
for i in 0..10 {
assert_eq!(y[i], arr[i]);
}
}
#[test]
fn random_tests() {
// Run tests with randomized inputs
let test_size = 100_000;
let test_op = 5_000;
let mut rng = thread_rng();
let mut array = vec![];
for _ in 0..test_size {
let x = rng.gen::<i32>();
array.push(x);
}
// reference sorted list
let mut copy = array.clone();
copy.sort();
// actual sorted list
let mut sorted_list = SortedList::from(array);
// Data setup
for _ in 0..test_op {
let x = rng.gen::<i32>();
// insert into copy
let k = match copy.binary_search(&x) {
Ok(i) => i,
Err(i) => i,
};
copy.insert(k, x);
// insert into sorted list
sorted_list.insert(x);
}
// Acutal tests
for _ in 0..test_op+test_size {
// Test: remove a random index, sorted order is maintained
let idx = rng.gen_range(0..copy.len());
let expect = copy.remove(idx);
let actual = sorted_list.remove(idx);
assert_eq!(expect, actual);
// Test: first
let expect = copy.first();
let actual = sorted_list.first();
assert_eq!(expect, actual);
// Test: last
let expect = copy.last();
let actual = sorted_list.last();
assert_eq!(expect, actual);
// Test: binary_search
let x = rng.gen::<i32>();
let actual = sorted_list.binary_search(&x);
let expect = copy.binary_search(&x);
assert_eq!(expect, actual);
// Test: get
let index = rng.gen_range(0..copy.len() + 2000);
let actual = sorted_list.get(index);
let expect = copy.get(index);
assert_eq!(expect, actual);
// Test: len
let actual = sorted_list.len();
let expect = copy.len();
assert_eq!(expect, actual);
// Test: is_empty
let actual = sorted_list.is_empty();
let expect = copy.is_empty();
assert_eq!(expect, actual);
}
}
#[test]
fn example() {
let array = vec![90, 19, 25];
let mut sorted_list = SortedList::from(array);
sorted_list.insert(100);
sorted_list.insert(1);
sorted_list.insert(20);
let x = sorted_list.remove(3);
assert_eq!(25, x);
assert_eq!(&20, sorted_list.kth_smallest(2));
assert_eq!(20, sorted_list[2]);
}
#[test]
fn binary_search_test() {
let array = vec![20; 100_000];
let sorted_list = SortedList::from(array);
let x = 50;
let actual = sorted_list.binary_search(&x);
let expected: Result<usize, usize> = Err(100_000);
assert_eq!(actual, expected);
}
#[test]
fn contains_test() {
let mut sorted_list = SortedList::from([10; 10_000]);
assert!(sorted_list.contains(&10));
assert!(!sorted_list.contains(&9));
sorted_list.insert(9);
assert!(sorted_list.contains(&9));
sorted_list.insert(11);
assert!(sorted_list.contains(&11));
}
#[test]
fn clear_test() {
// arrange
let mut sorted_list_1 = SortedList::from([10; 10_000]);
let mut sorted_list_2 = SortedList::from([1, 3, 4, 2, 0]);
// act
sorted_list_1.clear();
sorted_list_2.clear();
// assert
for sorted_list in [sorted_list_1, sorted_list_2] {
assert!(sorted_list._lists.is_empty());
for val in &sorted_list._index_tree {
assert!(val == &0);
}
assert!(sorted_list._index_tree.len() == 2*sorted_list._index_tree_offset);
}
}
#[test]
fn to_vec_test() {
// arrange
let mut rng = thread_rng();
let mut array: Vec<usize> = (0..5_000).collect();
array.shuffle(&mut rng);
let sorted_list = SortedList::from(array);
// act
let to_vec = sorted_list.to_vec();
// assert
assert_eq!((0..5_000).collect::<Vec<usize>>(), to_vec);
}
#[test]
fn flatten_test() {
// arrange
let mut rng = thread_rng();
let mut array: Vec<usize> = (0..5_000).collect();
array.shuffle(&mut rng);
let sorted_list = SortedList::from(array);
// act
let flatten = sorted_list.flatten();
// assert
for i in 0..5_000 {
assert_eq!(flatten[i], &i);
}
}
#[test]
fn complex_data_structure_test() {
// arrange
let mut array: Vec<Vec<i32>> = vec![];
for i in (0..2000).rev() {
array.push((0..i+1).collect());
}
// act
let sorted_list = SortedList::from(array);
// assert
for i in 0..2000 {
let actual: &Vec<i32> = &sorted_list[i];
let expected = (0..i+1).map(|x| x as i32).collect::<Vec<i32>>();
assert_eq!(i+1, actual.len());
for j in 0..actual.len() {
assert_eq!(actual[j], expected[j]);
}
}
}
}