sorted_groups/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
//! `sorted-groups` implement a data structure to store elements in sorted groups while maintaining the order of elements in each group.
//!
//! # Usage
//!
//! First, add the `sorted_groups` crate as a dependency:
//! ```sh
//! cargo add sorted_groups
//! ```
//!
//! ```
//! use sorted_groups::SortedGroups;
//!
//! #[derive(PartialEq, Eq, Ord, Debug)]
//! struct Element {
//! group: i32,
//! value: i32,
//! }
//!
//! impl PartialOrd for Element {
//! fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
//! Some(self.cmp(other))
//! }
//! }
//!
//! // Elements will be grouped by the `group` field
//! let mut sorted_groups = SortedGroups::<i32, Element, _>::new(|e| e.group);
//! sorted_groups.insert(Element { group: 1, value: 1 });
//! sorted_groups.insert(Element { group: 1, value: 2 });
//! sorted_groups.insert(Element { group: 2, value: 3 });
//!
//! // `len` returns the total number of elements
//! assert_eq!(sorted_groups.len(), 3);
//! // `groups_len` returns the number of groups
//! assert_eq!(sorted_groups.groups_len(), 2);
//! // `iter` returns an iterator over groups and elements
//! let mut iter = sorted_groups.iter();
//! assert_eq!(iter.next(), Some((&1, &Element { group: 1, value: 1 })));
//! assert_eq!(iter.next(), Some((&1, &Element { group: 1, value: 2 })));
//! assert_eq!(iter.next(), Some((&2, &Element { group: 2, value: 3 })));
//! assert_eq!(iter.next(), None);
//! ```
//!
use std::collections::{btree_map::BTreeMap, btree_set, BTreeSet};
pub struct SortedGroups<G, E, F>
where
G: Ord,
E: Ord,
F: Fn(&E) -> G,
{
groups: BTreeMap<G, BTreeSet<E>>,
group_from_element: F,
}
impl<G, E, F> SortedGroups<G, E, F>
where
G: Ord,
E: Ord,
F: Fn(&E) -> G,
{
pub fn new(group_from_element: F) -> Self {
Self {
groups: BTreeMap::new(),
group_from_element,
}
}
pub fn from_iter(elements: impl Iterator<Item = E>, group_from_element: F) -> Self {
let mut sorted_groups = Self::new(group_from_element);
for element in elements {
sorted_groups.insert(element);
}
sorted_groups
}
pub fn insert(&mut self, element: E) {
self.groups
.entry((self.group_from_element)(&element))
.or_default()
.insert(element);
}
pub fn len(&self) -> usize {
self.groups.values().map(|v| v.len()).sum()
}
pub fn groups_len(&self) -> usize {
self.groups.len()
}
pub fn iter_groups(&self) -> impl Iterator<Item = (&G, &BTreeSet<E>)> {
self.groups.iter()
}
}
pub struct SortedGroupsIter<'a, G, E> {
// Iterator over groups
groups_iter: std::collections::btree_map::Iter<'a, G, BTreeSet<E>>,
// Current group and its iterator
current_group: Option<(&'a G, btree_set::Iter<'a, E>)>,
}
impl<G, E, F> SortedGroups<G, E, F>
where
G: Ord,
E: Ord,
F: Fn(&E) -> G,
{
pub fn iter(&self) -> SortedGroupsIter<'_, G, E> {
let mut groups_iter = self.groups.iter();
let current_group = groups_iter.next().map(|(g, v)| (g, v.iter()));
SortedGroupsIter {
groups_iter,
current_group,
}
}
}
impl<'a, G, E> Iterator for SortedGroupsIter<'a, G, E>
where
G: Ord,
E: Ord,
{
type Item = (&'a G, &'a E);
fn next(&mut self) -> Option<Self::Item> {
loop {
match &mut self.current_group {
Some((group, iter)) => {
if let Some(element) = iter.next() {
return Some((*group, element));
} else {
// Current group is exhausted, move to next group
self.current_group = self.groups_iter.next().map(|(g, v)| (g, v.iter()));
}
}
None => return None,
}
}
}
}
// Implement IntoIterator for reference
impl<'a, G, E, F> IntoIterator for &'a SortedGroups<G, E, F>
where
G: Ord + Clone,
E: Ord,
F: Fn(&E) -> G,
{
type Item = (&'a G, &'a E);
type IntoIter = SortedGroupsIter<'a, G, E>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(PartialEq, Eq, Ord, Debug)]
struct Element {
group: i32,
value: i32,
}
impl PartialOrd for Element {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
#[test]
fn test_empty_sorted_groups() {
let sorted_groups = SortedGroups::<i32, Element, _>::new(|e| e.group);
assert_eq!(sorted_groups.len(), 0);
}
#[test]
fn test_insert_sorted_groups() {
let mut sorted_groups = SortedGroups::<i32, Element, _>::new(|e| e.group);
sorted_groups.insert(Element { group: 1, value: 1 });
sorted_groups.insert(Element { group: 1, value: 2 });
sorted_groups.insert(Element { group: 2, value: 3 });
assert_eq!(sorted_groups.len(), 3);
assert_eq!(sorted_groups.groups_len(), 2);
let mut iter = sorted_groups.iter();
assert_eq!(iter.next(), Some((&1, &Element { group: 1, value: 1 })));
assert_eq!(iter.next(), Some((&1, &Element { group: 1, value: 2 })));
assert_eq!(iter.next(), Some((&2, &Element { group: 2, value: 3 })));
assert_eq!(iter.next(), None);
}
}