1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
use std::{cmp::Ordering, iter::from_generator};
pub fn heap_sort<T>(v: &[T]) -> impl Iterator<Item = Vec<T>>
where
T: PartialOrd + Clone,
{
heap_sort_by(v, |a, b| a.partial_cmp(b))
}
pub fn heap_sort_by<T, F>(v: &[T], compare: F) -> impl Iterator<Item = Vec<T>>
where
F: Fn(&T, &T) -> Option<Ordering> + Copy,
T: Clone,
{
let mut state = v.to_vec();
from_generator(move || {
yield state.to_vec();
build_max_heap(&mut state, compare);
yield state.to_vec();
for i in (1..state.len()).rev() {
state.swap(0, i);
yield state.to_vec();
max_heapify(&mut state, 0, i, compare);
}
})
}
fn build_max_heap<T, F>(v: &mut Vec<T>, compare: F)
where
F: Fn(&T, &T) -> Option<Ordering> + Copy,
T: Clone,
{
let len = v.len();
for i in (0..len / 2).rev() {
max_heapify(v, i, len, compare);
}
}
fn max_heapify<T, F>(v: &mut Vec<T>, i: usize, heap_size: usize, compare: F)
where
F: Fn(&T, &T) -> Option<Ordering> + Copy,
T: Clone,
{
let left = 2 * i + 1;
let right = 2 * i + 2;
let mut largest = i;
if left < heap_size && compare(&v[left], &v[largest]) == Some(Ordering::Greater) {
largest = left;
}
if right < heap_size && compare(&v[right], &v[largest]) == Some(Ordering::Greater) {
largest = right;
}
if largest != i {
v.swap(i, largest);
max_heapify(v, largest, heap_size, compare);
}
}