1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use std::time::{ Instant, Duration };

/// A trait providing the insertion sort method.
pub trait InsertionSort<T: PartialEq + PartialOrd + Clone + Copy> {
    /// The insertion sort algorithm.
    ///
    /// Sorts the `Vec` it is called on.
    fn insertion_sort(&mut self);

    /// The insertion sort algorithm but timed.
    ///
    /// Sorts the `Vec` it is called on and returns the `Duration` of the process.
    fn insertion_sort_timed(&mut self) -> Duration;

    /// The insertion sort algorithm but stepped.
    ///
    /// Sorts the `Vec` it is called on and returns a `Vec` containing each step of the process.
    fn insertion_sort_stepped(&mut self) -> Vec<Vec<T>>;

    /// The insertion sort algorithm but stepped _and_ timed.
    ///
    /// Sorts the `Vec` it is called on and returns the `Duration` of the process, including the
    /// `Duration` of the entire process.
    fn insertion_sort_stepped_and_timed(&mut self) -> (Vec<Vec<T>>, Duration);
}

/// The trait implementation of the insertion sort algorithm.
impl<T> InsertionSort<T> for Vec<T> 
    where T: PartialEq + PartialOrd + Clone + Copy,
{
    fn insertion_sort(&mut self) {
        if self.len() <= 1 {
            return;
        }

        for i in 0..self.len() {
            let mut j = i;
            while j > 0 && self[j] < self[j-1] {
                self.swap(j, j-1);
                j -= 1;
            }
        }
    }

    fn insertion_sort_timed(&mut self) -> Duration {
        let time = Instant::now();

        if self.len() <= 1 {
            return time.elapsed();
        }

        for i in 0..self.len() {
            let mut j = i;
            while j > 0 && self[j] < self[j-1] {
                self.swap(j, j-1);
                j -= 1;
            }
        }

        return time.elapsed();
    }

    fn insertion_sort_stepped(&mut self) -> Vec<Vec<T>> {
        let mut steps = vec![self.clone()];

        if self.len() <= 1 {
            return steps;
        }

        for i in 0..self.len() {
            let mut j = i;
            while j > 0 && self[j] < self[j-1] {
                self.swap(j, j-1);
                steps.push(self.clone());
                j -= 1;
            }
        }

        return steps;
    }

    fn insertion_sort_stepped_and_timed(&mut self) -> (Vec<Vec<T>>, Duration) {
        let time = Instant::now();

        let mut steps = vec![self.clone()];

        if self.len() <= 1 {
            return (steps, time.elapsed());
        }

        for i in 0..self.len() {
            let mut j = i;
            while j > 0 && self[j] < self[j-1] {
                self.swap(j, j-1);
                steps.push(self.clone());
                j -= 1;
            }
        }

        (steps, time.elapsed())
    }
}

/// The insertion sort algorithm.
///
/// Sorts the given `Vec` and returns the result.
pub fn insertion_sort<T>(mut arr: Vec<T>) -> Vec<T> 
    where T: PartialEq + PartialOrd + Clone + Copy,
{
    if arr.len() <= 1 {
        return arr;
    }

    for i in 0..arr.len() {
        let mut j = i;
        while j > 0 && arr[j] < arr[j-1] {
            arr.swap(j, j-1);
            j -= 1;
        }
    }

    return arr;
}

/// The insertion sort algorithm but timed.
///
/// Sorts the given `Vec` and returns the result and the `Duration` of the entire process.
pub fn insertion_sort_timed<T>(mut arr: Vec<T>) -> (Vec<T>, Duration)
    where T: PartialEq + PartialOrd + Clone + Copy,
{
    let time = Instant::now();

    if arr.len() <= 1 {
        return (arr, time.elapsed());
    }

    for i in 0..arr.len() {
        let mut j = i;
        while j > 0 && arr[j] < arr[j-1] {
            arr.swap(j, j-1);
            j -= 1;
        }
    }

    (arr, time.elapsed())
}

/// The insertion sort algorithm but stepped.
///
/// Sorts the given `Vec` and returns the result and a `Vec` containing all steps of the process.
pub fn insertion_sort_stepped<T>(mut arr: Vec<T>) -> (Vec<T>, Vec<Vec<T>>)
    where T: PartialEq + PartialOrd + Clone + Copy,
{
    let mut steps = vec![arr.clone()];

    if arr.len() <= 1 {
        return (arr, steps);
    }

    for i in 0..arr.len() {
        let mut j = i;
        while j > 0 && arr[j] < arr[j-1] {
            arr.swap(j, j-1);
            steps.push(arr.clone());
            j -= 1;
        }
    }

    (arr, steps)
}

/// The insertion sort algorithm but stepped _and_ timed.
///
/// Sorts the given `Vec` and returns the result and a `Vec` containing all steps of the process,
/// including the `Duration` of the entire process.
pub fn insertion_sort_stepped_and_timed<T>(mut arr: Vec<T>) -> (Vec<T>, Vec<Vec<T>>, Duration)
    where T: PartialEq + PartialOrd + Clone + Copy,
{
    let time = Instant::now();

    let mut steps = vec![arr.clone()];

    if arr.len() <= 1 {
        return (arr, steps, time.elapsed());
    }

    for i in 0..arr.len() {
        let mut j = i;
        while j > 0 && arr[j] < arr[j-1] {
            arr.swap(j, j-1);
            steps.push(arr.clone());
            j -= 1;
        }
    }

    (arr, steps, time.elapsed())
}