Crate sophus_lie

Source
Expand description

§Lie groups in 2D and 3D: rotations, translations, etc.

Lie groups crate - part of the sophus-rs project

§Integration with sophus-rs

This crate is part of the sophus umbrella crate. It re-exports the relevant prelude types under prelude, so you can seamlessly interoperate with the rest of the sophus-rs types.

Modules§

prelude
sophus_lie prelude.

Structs§

AffineGroupTemplateImpl
Template of an affine group.
Complex
Complex number represented as (re, im).
ComplexImpl
Implementation utilities for Complex.
EmptySliceError
slice is empty
LieGroup
Lie group
Quaternion
Quaternion represented as (r, x, y, z).
QuaternionImpl
Implementation utilities for Quaternion.
Rotation2Impl
2d rotation implementation.
Rotation3Impl
3d rotation implementation.
RotationBoost3Impl
3d rotation-boost implementation.
Sl2c
SL(2,ℂ) - Complex linear group of rank 2.
Sl2cImpl
Implementation utilities for Sl2c.

Enums§

IterativeAverageError
error of iterative_average

Traits§

HasAverage
Lie Group trait
HasDisambiguate
Disambiguate the parameters.
IsAffineGroup
Affine Lie Group trait.
IsLieFactorGroupImpl
Lie Factor Group
IsLieGroup
Lie Group trait
IsLieGroupImpl
Lie Group implementation trait
IsRealLieFactorGroupImpl
Lie Factor Group implementation trait for real scalar, f64
IsRealLieGroupImpl
Lie Group implementation trait for real scalar, f64
LieGroupAverageTests
Tests for Lie group average
RealFactorLieGroupTest
A trait for Lie groups.
RealLieGroupTest
A trait for Lie groups.

Functions§

iterative_average
iterative Lie group average

Type Aliases§

ComplexF64
Complex number with f64 scalar type.
Galilean3
3d Galilean transformations – element of the Galilean group Gal(3)
Galilei3F64
3d Galilean transformations with f64 scalar type - element of the Galilean group Gal(3)
Galilei3Impl
3d Galilean transformations implementation details
Isometry2
2-d isometry – element of the Special Euclidean group SE(2)
Isometry3
3-d isometry – element of the Special Euclidean group SE(3)
Isometry2F64
2d isometry with f64 scalar type - element of the Special Euclidean group SE(2)
Isometry2Impl
2d isometry implementation.
Isometry3F64
3d isometry with f64 scalar type - element of the Special Euclidean group SE(3)
Isometry3Impl
3d isometry implementation.
QuaternionF64
Quaternion with f64 scalar type.
Rotation2
2d rotations - element of the Special Orthogonal group SO(2)
Rotation3
3d rotations - element of the Special Orthogonal group SO(3)
Rotation2F64
2d rotation with f64 scalar type - element of the Special Orthogonal group SO(2)
Rotation3F64
3d rotation with f64 scalar type a - element of the Special Orthogonal group SO(3)
RotationBoost3
3-d rotation and boost – element of the Homogeneous Galilei group HG(3)**
RotationBoost3F64
3d rotation-boost with f64 scalar type - element of the Homogeneous Galilei group HG(3)
Sl2cF64
Matrix with f64 scalar type.