Expand description
§Lie groups in 2D and 3D: rotations, translations, etc.
Lie groups crate - part of the sophus-rs project
§Integration with sophus-rs
This crate is part of the sophus umbrella crate. It re-exports the relevant prelude types under prelude, so you can seamlessly interoperate with the rest of the sophus-rs types.
Modules§
- prelude
- sophus_lie prelude.
Structs§
- Affine
Group Template Impl - Template of an affine group.
- Complex
- Complex number represented as
(re, im). - Complex
Impl - Implementation utilities for
Complex. - Empty
Slice Error - slice is empty
- LieGroup
- Lie group
- Quaternion
- Quaternion represented as
(r, x, y, z). - Quaternion
Impl - Implementation utilities for
Quaternion. - Rotation2
Impl - 2d rotation implementation.
- Rotation3
Impl - 3d rotation implementation.
- Rotation
Boost3 Impl - 3d rotation-boost implementation.
- Sl2c
- SL(2,ℂ) - Complex linear group of rank 2.
- Sl2c
Impl - Implementation utilities for
Sl2c.
Enums§
- Iterative
Average Error - error of iterative_average
Traits§
- HasAverage
- Lie Group trait
- HasDisambiguate
- Disambiguate the parameters.
- IsAffine
Group - Affine Lie Group trait.
- IsLie
Factor Group Impl - Lie Factor Group
- IsLie
Group - Lie Group trait
- IsLie
Group Impl - Lie Group implementation trait
- IsReal
LieFactor Group Impl - Lie Factor Group implementation trait for real scalar, f64
- IsReal
LieGroup Impl - Lie Group implementation trait for real scalar, f64
- LieGroup
Average Tests - Tests for Lie group average
- Real
Factor LieGroup Test - A trait for Lie groups.
- Real
LieGroup Test - A trait for Lie groups.
Functions§
- iterative_
average - iterative Lie group average
Type Aliases§
- Complex
F64 - Complex number with
f64scalar type. - Galilean3
- 3d Galilean transformations – element of the Galilean group Gal(3)
- Galilei3
F64 - 3d Galilean transformations with f64 scalar type - element of the Galilean group Gal(3)
- Galilei3
Impl - 3d Galilean transformations implementation details
- Isometry2
- 2-d isometry – element of the Special Euclidean group SE(2)
- Isometry3
- 3-d isometry – element of the Special Euclidean group SE(3)
- Isometry2
F64 - 2d isometry with f64 scalar type - element of the Special Euclidean group SE(2)
- Isometry2
Impl - 2d isometry implementation.
- Isometry3
F64 - 3d isometry with f64 scalar type - element of the Special Euclidean group SE(3)
- Isometry3
Impl - 3d isometry implementation.
- Quaternion
F64 - Quaternion with
f64scalar type. - Rotation2
- 2d rotations - element of the Special Orthogonal group SO(2)
- Rotation3
- 3d rotations - element of the Special Orthogonal group SO(3)
- Rotation2
F64 - 2d rotation with f64 scalar type - element of the Special Orthogonal group SO(2)
- Rotation3
F64 - 3d rotation with f64 scalar type a - element of the Special Orthogonal group SO(3)
- Rotation
Boost3 - 3-d rotation and boost – element of the Homogeneous Galilei group HG(3)**
- Rotation
Boost3 F64 - 3d rotation-boost with f64 scalar type - element of the Homogeneous Galilei group HG(3)
- Sl2cF64
- Matrix with
f64scalar type.