Expand description
K-opt move selector for tour optimization.
Generates k-opt moves by enumerating all valid cut point combinations within selected entities and applying reconnection patterns.
§Complexity
For a route of length n and k-opt:
- Full enumeration: O(n^k) cut combinations × reconnection patterns
- Use
NearbyKOptMoveSelectorto reduce to O(n × m^(k-1)) with nearby selection
§Example
use solverforge_solver::heuristic::selector::k_opt::{KOptMoveSelector, KOptConfig};
use solverforge_solver::heuristic::selector::entity::FromSolutionEntitySelector;
use solverforge_core::domain::PlanningSolution;
use solverforge_core::score::SimpleScore;
#[derive(Clone, Debug)]
struct Tour { cities: Vec<i32>, score: Option<SimpleScore> }
impl PlanningSolution for Tour {
type Score = SimpleScore;
fn score(&self) -> Option<Self::Score> { self.score }
fn set_score(&mut self, score: Option<Self::Score>) { self.score = score; }
}
fn list_len(s: &Tour, _: usize) -> usize { s.cities.len() }
fn sublist_remove(s: &mut Tour, _: usize, start: usize, end: usize) -> Vec<i32> {
s.cities.drain(start..end).collect()
}
fn sublist_insert(s: &mut Tour, _: usize, pos: usize, items: Vec<i32>) {
for (i, item) in items.into_iter().enumerate() {
s.cities.insert(pos + i, item);
}
}
let config = KOptConfig::new(3); // 3-opt
let entity_selector = Box::new(FromSolutionEntitySelector::new(0));
let selector = KOptMoveSelector::<Tour, i32>::new(
entity_selector,
config,
list_len,
sublist_remove,
sublist_insert,
"cities",
0,
);Structs§
- KOpt
Config - Configuration for k-opt move generation.
- KOpt
Move Selector - A move selector that generates k-opt moves.
- NearbyK
OptMove Selector - A k-opt move selector with nearby selection for improved performance.
Traits§
- List
Position Distance Meter - A distance meter for list element positions.