solar_positioning/time.rs
1//! Time-related calculations for solar positioning.
2//!
3//! This module provides Julian date calculations and ΔT (Delta T) estimation
4//! following the algorithms from NREL SPA and Espenak & Meeus.
5
6#![allow(clippy::unreadable_literal)]
7#![allow(clippy::many_single_char_names)]
8
9use crate::math::{floor, polynomial};
10use crate::{Error, Result};
11use chrono::{Datelike, TimeZone, Timelike};
12
13/// Seconds per day (86,400)
14const SECONDS_PER_DAY: f64 = 86_400.0;
15
16/// Julian Day Number for J2000.0 epoch (2000-01-01 12:00:00 UTC)
17const J2000_JDN: f64 = 2_451_545.0;
18
19/// Days per Julian century
20const DAYS_PER_CENTURY: f64 = 36_525.0;
21
22/// Julian date representation for astronomical calculations.
23///
24/// Follows the SPA algorithm described in Reda & Andreas (2003).
25/// Supports both Julian Date (JD) and Julian Ephemeris Date (JDE) calculations.
26#[derive(Debug, Clone, Copy, PartialEq)]
27pub struct JulianDate {
28 /// Julian Date (JD) - referenced to UT1
29 jd: f64,
30 /// Delta T in seconds - difference between TT and UT1
31 delta_t: f64,
32}
33
34impl JulianDate {
35 /// Creates a new Julian date from a timezone-aware chrono `DateTime`.
36 ///
37 /// This function properly handles timezone-aware datetimes by converting the entire
38 /// datetime to UTC for accurate Julian Date calculations. Solar calculations require
39 /// proper handling of the Earth's rotation relative to the Sun, which is referenced
40 /// to Universal Time.
41 ///
42 /// # Arguments
43 /// * `datetime` - Timezone-aware date and time
44 /// * `delta_t` - ΔT in seconds (difference between TT and UT1)
45 ///
46 /// # Returns
47 /// Julian date or error if the date is invalid
48 ///
49 /// # Errors
50 /// Returns error if the date/time components are invalid (e.g., invalid month, day, hour).
51 pub fn from_datetime<Tz: TimeZone>(
52 datetime: &chrono::DateTime<Tz>,
53 delta_t: f64,
54 ) -> Result<Self> {
55 // Convert the entire datetime to UTC for proper Julian Date calculation
56 let utc_datetime = datetime.with_timezone(&chrono::Utc);
57 Self::from_utc(
58 utc_datetime.year(),
59 utc_datetime.month(),
60 utc_datetime.day(),
61 utc_datetime.hour(),
62 utc_datetime.minute(),
63 f64::from(utc_datetime.second()) + f64::from(utc_datetime.nanosecond()) / 1e9,
64 delta_t,
65 )
66 }
67
68 /// Creates a new Julian date from year, month, day, hour, minute, and second in UTC.
69 ///
70 /// # Arguments
71 /// * `year` - Year (can be negative for BCE years)
72 /// * `month` - Month (1-12)
73 /// * `day` - Day of month (1-31)
74 /// * `hour` - Hour (0-23)
75 /// * `minute` - Minute (0-59)
76 /// * `second` - Second (0-59, can include fractional seconds)
77 /// * `delta_t` - ΔT in seconds (difference between TT and UT1)
78 ///
79 /// # Returns
80 /// Julian date or error if the date is invalid
81 ///
82 /// # Errors
83 /// Returns error if any date/time component is outside valid ranges (month 1-12, day 1-31, hour 0-23, minute 0-59, second 0-59.999).
84 ///
85 /// # Example
86 /// ```
87 /// # use solar_positioning::time::JulianDate;
88 /// let jd = JulianDate::from_utc(2023, 6, 21, 12, 0, 0.0, 69.0).unwrap();
89 /// assert!(jd.julian_date() > 2_460_000.0);
90 /// ```
91 pub fn from_utc(
92 year: i32,
93 month: u32,
94 day: u32,
95 hour: u32,
96 minute: u32,
97 second: f64,
98 delta_t: f64,
99 ) -> Result<Self> {
100 // Validate input ranges
101 if !(1..=12).contains(&month) {
102 return Err(Error::invalid_datetime("month must be between 1 and 12"));
103 }
104 if !(1..=31).contains(&day) {
105 return Err(Error::invalid_datetime("day must be between 1 and 31"));
106 }
107 if hour > 23 {
108 return Err(Error::invalid_datetime("hour must be between 0 and 23"));
109 }
110 if minute > 59 {
111 return Err(Error::invalid_datetime("minute must be between 0 and 59"));
112 }
113 if !(0.0..60.0).contains(&second) {
114 return Err(Error::invalid_datetime(
115 "second must be between 0 and 59.999...",
116 ));
117 }
118
119 let jd = calculate_julian_date(year, month, day, hour, minute, second);
120 Ok(Self { jd, delta_t })
121 }
122
123 /// Creates a Julian date assuming ΔT = 0.
124 ///
125 /// # Arguments
126 /// * `year`, `month`, `day`, `hour`, `minute`, `second` - UTC date/time components
127 ///
128 /// # Returns
129 /// Julian date with ΔT = 0
130 ///
131 /// # Errors
132 /// Returns error if the date/time components are outside valid ranges.
133 pub fn from_utc_simple(
134 year: i32,
135 month: u32,
136 day: u32,
137 hour: u32,
138 minute: u32,
139 second: f64,
140 ) -> Result<Self> {
141 Self::from_utc(year, month, day, hour, minute, second, 0.0)
142 }
143
144 /// Gets the Julian Date (JD) value.
145 ///
146 /// # Returns
147 /// Julian Date referenced to UT1
148 #[must_use]
149 pub const fn julian_date(&self) -> f64 {
150 self.jd
151 }
152
153 /// Gets the ΔT value in seconds.
154 ///
155 /// # Returns
156 /// ΔT (Delta T) in seconds
157 #[must_use]
158 pub const fn delta_t(&self) -> f64 {
159 self.delta_t
160 }
161
162 /// Calculates the Julian Ephemeris Day (JDE).
163 ///
164 /// JDE = JD + ΔT/86400
165 ///
166 /// # Returns
167 /// Julian Ephemeris Day
168 #[must_use]
169 pub fn julian_ephemeris_day(&self) -> f64 {
170 self.jd + self.delta_t / SECONDS_PER_DAY
171 }
172
173 /// Calculates the Julian Century (JC) from J2000.0.
174 ///
175 /// JC = (JD - 2451545.0) / 36525
176 ///
177 /// # Returns
178 /// Julian centuries since J2000.0 epoch
179 #[must_use]
180 pub fn julian_century(&self) -> f64 {
181 (self.jd - J2000_JDN) / DAYS_PER_CENTURY
182 }
183
184 /// Calculates the Julian Ephemeris Century (JCE) from J2000.0.
185 ///
186 /// JCE = (JDE - 2451545.0) / 36525
187 ///
188 /// # Returns
189 /// Julian ephemeris centuries since J2000.0 epoch
190 #[must_use]
191 pub fn julian_ephemeris_century(&self) -> f64 {
192 (self.julian_ephemeris_day() - J2000_JDN) / DAYS_PER_CENTURY
193 }
194
195 /// Calculates the Julian Ephemeris Millennium (JME) from J2000.0.
196 ///
197 /// JME = JCE / 10
198 ///
199 /// # Returns
200 /// Julian ephemeris millennia since J2000.0 epoch
201 #[must_use]
202 pub fn julian_ephemeris_millennium(&self) -> f64 {
203 self.julian_ephemeris_century() / 10.0
204 }
205
206 /// Add days to the Julian date (like Java constructor: new `JulianDate(jd.julianDate()` + i - 1, 0))
207 pub(crate) fn add_days(self, days: f64) -> Self {
208 Self {
209 jd: self.jd + days,
210 delta_t: self.delta_t,
211 }
212 }
213}
214
215/// Calculates Julian Date from UTC date/time components.
216///
217/// This follows the algorithm from Reda & Andreas (2003), which is based on
218/// Meeus, "Astronomical Algorithms", 2nd edition.
219fn calculate_julian_date(
220 year: i32,
221 month: u32,
222 day: u32,
223 hour: u32,
224 minute: u32,
225 second: f64,
226) -> f64 {
227 let mut y = year;
228 let mut m = i32::try_from(month).expect("month should be valid i32");
229
230 // Adjust for January and February being treated as months 13 and 14 of previous year
231 if m < 3 {
232 y -= 1;
233 m += 12;
234 }
235
236 // Calculate fractional day
237 let d = f64::from(day) + (f64::from(hour) + (f64::from(minute) + second / 60.0) / 60.0) / 24.0;
238
239 // Basic Julian Date calculation
240 let mut jd =
241 floor(365.25 * (f64::from(y) + 4716.0)) + floor(30.6001 * f64::from(m + 1)) + d - 1524.5;
242
243 // Gregorian calendar correction (after October 15, 1582)
244 // JDN 2299161 corresponds to October 15, 1582
245 if jd >= 2_299_161.0 {
246 let a = floor(f64::from(y) / 100.0);
247 let b = 2.0 - a + floor(a / 4.0);
248 jd += b;
249 }
250
251 jd
252}
253
254/// Utilities for estimating ΔT (Delta T) values.
255///
256/// ΔT represents the difference between Terrestrial Time (TT) and Universal Time (UT1).
257/// These estimates are based on Espenak and Meeus polynomial fits updated in 2014.
258pub struct DeltaT;
259
260impl DeltaT {
261 /// Estimates ΔT for a given decimal year.
262 ///
263 /// Based on polynomial fits from Espenak & Meeus, updated 2014.
264 /// See: <https://www.eclipsewise.com/help/deltatpoly2014.html>
265 ///
266 /// # Arguments
267 /// * `decimal_year` - Year with fractional part (e.g., 2024.5 for mid-2024)
268 ///
269 /// # Returns
270 /// Estimated ΔT in seconds
271 ///
272 /// # Errors
273 /// Returns error for years outside the valid range (-500 to 3000 CE)
274 ///
275 /// # Example
276 /// ```
277 /// # use solar_positioning::time::DeltaT;
278 /// let delta_t = DeltaT::estimate(2024.0).unwrap();
279 /// assert!(delta_t > 60.0 && delta_t < 80.0); // Reasonable range for 2024
280 /// ```
281 #[allow(clippy::too_many_lines)] // Comprehensive polynomial fit across historical periods
282 pub fn estimate(decimal_year: f64) -> Result<f64> {
283 let year = decimal_year;
284
285 if !year.is_finite() {
286 return Err(Error::invalid_datetime("year must be finite"));
287 }
288
289 let delta_t = if year < -500.0 {
290 let u = (year - 1820.0) / 100.0;
291 polynomial(&[-20.0, 0.0, 32.0], u)
292 } else if year < 500.0 {
293 let u = year / 100.0;
294 polynomial(
295 &[
296 10583.6,
297 -1014.41,
298 33.78311,
299 -5.952053,
300 -0.1798452,
301 0.022174192,
302 0.0090316521,
303 ],
304 u,
305 )
306 } else if year < 1600.0 {
307 let u = (year - 1000.0) / 100.0;
308 polynomial(
309 &[
310 1574.2,
311 -556.01,
312 71.23472,
313 0.319781,
314 -0.8503463,
315 -0.005050998,
316 0.0083572073,
317 ],
318 u,
319 )
320 } else if year < 1700.0 {
321 let t = year - 1600.0;
322 polynomial(&[120.0, -0.9808, -0.01532, 1.0 / 7129.0], t)
323 } else if year < 1800.0 {
324 let t = year - 1700.0;
325 polynomial(
326 &[8.83, 0.1603, -0.0059285, 0.00013336, -1.0 / 1_174_000.0],
327 t,
328 )
329 } else if year < 1860.0 {
330 let t = year - 1800.0;
331 polynomial(
332 &[
333 13.72,
334 -0.332447,
335 0.0068612,
336 0.0041116,
337 -0.00037436,
338 0.0000121272,
339 -0.0000001699,
340 0.000000000875,
341 ],
342 t,
343 )
344 } else if year < 1900.0 {
345 let t = year - 1860.0;
346 polynomial(
347 &[
348 7.62,
349 0.5737,
350 -0.251754,
351 0.01680668,
352 -0.0004473624,
353 1.0 / 233_174.0,
354 ],
355 t,
356 )
357 } else if year < 1920.0 {
358 let t = year - 1900.0;
359 polynomial(&[-2.79, 1.494119, -0.0598939, 0.0061966, -0.000197], t)
360 } else if year < 1941.0 {
361 let t = year - 1920.0;
362 polynomial(&[21.20, 0.84493, -0.076100, 0.0020936], t)
363 } else if year < 1961.0 {
364 let t = year - 1950.0;
365 polynomial(&[29.07, 0.407, -1.0 / 233.0, 1.0 / 2547.0], t)
366 } else if year < 1986.0 {
367 let t = year - 1975.0;
368 polynomial(&[45.45, 1.067, -1.0 / 260.0, -1.0 / 718.0], t)
369 } else if year < 2005.0 {
370 let t = year - 2000.0;
371 polynomial(
372 &[
373 63.86,
374 0.3345,
375 -0.060374,
376 0.0017275,
377 0.000651814,
378 0.00002373599,
379 ],
380 t,
381 )
382 } else if year < 2015.0 {
383 let t = year - 2005.0;
384 polynomial(&[64.69, 0.2930], t)
385 } else if year <= 3000.0 {
386 let t = year - 2015.0;
387 polynomial(&[67.62, 0.3645, 0.0039755], t)
388 } else {
389 return Err(Error::invalid_datetime(
390 "ΔT estimates not available beyond year 3000",
391 ));
392 };
393
394 Ok(delta_t)
395 }
396
397 /// Estimates ΔT from year and month.
398 ///
399 /// Calculates decimal year as: year + (month - 0.5) / 12
400 ///
401 /// # Arguments
402 /// * `year` - Year
403 /// * `month` - Month (1-12)
404 ///
405 /// # Returns
406 /// Estimated ΔT in seconds
407 ///
408 /// # Errors
409 /// Returns error if month is outside the range 1-12.
410 pub fn estimate_from_date(year: i32, month: u32) -> Result<f64> {
411 if !(1..=12).contains(&month) {
412 return Err(Error::invalid_datetime("month must be between 1 and 12"));
413 }
414
415 let decimal_year = f64::from(year) + (f64::from(month) - 0.5) / 12.0;
416 Self::estimate(decimal_year)
417 }
418
419 /// Estimates ΔT from any date-like type.
420 ///
421 /// Convenience method that extracts the year and month from any chrono type
422 /// that implements `Datelike` (`DateTime`, `NaiveDateTime`, `NaiveDate`, etc.).
423 ///
424 /// # Arguments
425 /// * `date` - Any date-like type
426 ///
427 /// # Returns
428 /// Estimated ΔT in seconds
429 ///
430 /// # Errors
431 /// Returns error if the date components are invalid.
432 ///
433 /// # Example
434 /// ```
435 /// # use solar_positioning::time::DeltaT;
436 /// # use chrono::{DateTime, FixedOffset, NaiveDate};
437 ///
438 /// // Works with DateTime
439 /// let datetime = "2024-06-21T12:00:00-07:00".parse::<DateTime<FixedOffset>>().unwrap();
440 /// let delta_t = DeltaT::estimate_from_date_like(&datetime).unwrap();
441 /// assert!(delta_t > 60.0 && delta_t < 80.0);
442 ///
443 /// // Also works with NaiveDate
444 /// let date = NaiveDate::from_ymd_opt(2024, 6, 21).unwrap();
445 /// let delta_t2 = DeltaT::estimate_from_date_like(&date).unwrap();
446 /// assert_eq!(delta_t, delta_t2);
447 /// ```
448 pub fn estimate_from_date_like<D: Datelike>(date: &D) -> Result<f64> {
449 Self::estimate_from_date(date.year(), date.month())
450 }
451}
452
453#[cfg(test)]
454mod tests {
455 use super::*;
456
457 const EPSILON: f64 = 1e-10;
458
459 #[test]
460 fn test_julian_date_creation() {
461 let jd = JulianDate::from_utc(2000, 1, 1, 12, 0, 0.0, 0.0).unwrap();
462
463 // J2000.0 epoch should be exactly 2451545.0
464 assert!((jd.julian_date() - J2000_JDN).abs() < EPSILON);
465 assert_eq!(jd.delta_t(), 0.0);
466 }
467
468 #[test]
469 fn test_julian_date_validation() {
470 assert!(JulianDate::from_utc(2024, 13, 1, 0, 0, 0.0, 0.0).is_err()); // Invalid month
471 assert!(JulianDate::from_utc(2024, 1, 32, 0, 0, 0.0, 0.0).is_err()); // Invalid day
472 assert!(JulianDate::from_utc(2024, 1, 1, 24, 0, 0.0, 0.0).is_err()); // Invalid hour
473 assert!(JulianDate::from_utc(2024, 1, 1, 0, 60, 0.0, 0.0).is_err()); // Invalid minute
474 assert!(JulianDate::from_utc(2024, 1, 1, 0, 0, 60.0, 0.0).is_err()); // Invalid second
475 }
476
477 #[test]
478 fn test_julian_centuries() {
479 let jd = JulianDate::from_utc(2000, 1, 1, 12, 0, 0.0, 0.0).unwrap();
480
481 // J2000.0 should give JC = 0
482 assert!(jd.julian_century().abs() < EPSILON);
483 assert!(jd.julian_ephemeris_century().abs() < EPSILON);
484 assert!(jd.julian_ephemeris_millennium().abs() < EPSILON);
485 }
486
487 #[test]
488 fn test_julian_ephemeris_day() {
489 let delta_t = 69.0; // seconds
490 let jd = JulianDate::from_utc(2023, 6, 21, 12, 0, 0.0, delta_t).unwrap();
491
492 let jde = jd.julian_ephemeris_day();
493 let expected = jd.julian_date() + delta_t / SECONDS_PER_DAY;
494
495 assert!((jde - expected).abs() < EPSILON);
496 }
497
498 #[test]
499 fn test_gregorian_calendar_correction() {
500 // Test dates before and after Gregorian calendar adoption
501 // October 4, 1582 was followed by October 15, 1582
502 let julian_date = JulianDate::from_utc(1582, 10, 4, 12, 0, 0.0, 0.0).unwrap();
503 let gregorian_date = JulianDate::from_utc(1582, 10, 15, 12, 0, 0.0, 0.0).unwrap();
504
505 // The calendar dates are 11 days apart, but in Julian Day Numbers they should be 1 day apart
506 // because the 10-day gap was artificial
507 let diff = gregorian_date.julian_date() - julian_date.julian_date();
508 assert!(
509 (diff - 1.0).abs() < 1e-6,
510 "Expected 1 day difference in JD, got {diff}"
511 );
512
513 // Test that the Gregorian correction is applied correctly
514 // Dates after October 15, 1582 should have the correction
515 let pre_gregorian = JulianDate::from_utc(1582, 10, 1, 12, 0, 0.0, 0.0).unwrap();
516 let post_gregorian = JulianDate::from_utc(1583, 1, 1, 12, 0, 0.0, 0.0).unwrap();
517
518 // Verify that both exist and the calculation doesn't panic
519 assert!(pre_gregorian.julian_date() > 2_000_000.0);
520 assert!(post_gregorian.julian_date() > pre_gregorian.julian_date());
521 }
522
523 #[test]
524 fn test_delta_t_modern_estimates() {
525 // Test some known ranges
526 let delta_t_2000 = DeltaT::estimate(2000.0).unwrap();
527 let delta_t_2020 = DeltaT::estimate(2020.0).unwrap();
528
529 assert!(delta_t_2000 > 60.0 && delta_t_2000 < 70.0);
530 assert!(delta_t_2020 > 65.0 && delta_t_2020 < 75.0);
531 assert!(delta_t_2020 > delta_t_2000); // ΔT is generally increasing
532 }
533
534 #[test]
535 fn test_delta_t_historical_estimates() {
536 let delta_t_1900 = DeltaT::estimate(1900.0).unwrap();
537 let delta_t_1950 = DeltaT::estimate(1950.0).unwrap();
538
539 assert!(delta_t_1900 < 0.0); // Negative in early 20th century
540 assert!(delta_t_1950 > 25.0 && delta_t_1950 < 35.0);
541 }
542
543 #[test]
544 fn test_delta_t_boundary_conditions() {
545 // Test edge cases
546 assert!(DeltaT::estimate(-500.0).is_ok());
547 assert!(DeltaT::estimate(3000.0).is_ok());
548 assert!(DeltaT::estimate(-501.0).is_ok()); // Should work for ancient dates
549 assert!(DeltaT::estimate(3001.0).is_err()); // Should fail beyond 3000
550 }
551
552 #[test]
553 fn test_delta_t_from_date() {
554 let delta_t = DeltaT::estimate_from_date(2024, 6).unwrap();
555 let delta_t_decimal = DeltaT::estimate(2024.5 - 1.0 / 24.0).unwrap(); // June = month 6, so (6-0.5)/12 ≈ 0.458
556
557 // Should be very close
558 assert!((delta_t - delta_t_decimal).abs() < 0.01);
559
560 // Test invalid month
561 assert!(DeltaT::estimate_from_date(2024, 13).is_err());
562 assert!(DeltaT::estimate_from_date(2024, 0).is_err());
563 }
564
565 #[test]
566 fn test_delta_t_from_date_like() {
567 use chrono::{DateTime, FixedOffset, NaiveDate, Utc};
568
569 // Test with DateTime<FixedOffset>
570 let datetime_fixed = "2024-06-15T12:00:00-07:00"
571 .parse::<DateTime<FixedOffset>>()
572 .unwrap();
573 let delta_t_fixed = DeltaT::estimate_from_date_like(&datetime_fixed).unwrap();
574
575 // Test with DateTime<Utc>
576 let datetime_utc = "2024-06-15T19:00:00Z".parse::<DateTime<Utc>>().unwrap();
577 let delta_t_utc = DeltaT::estimate_from_date_like(&datetime_utc).unwrap();
578
579 // Test with NaiveDate
580 let naive_date = NaiveDate::from_ymd_opt(2024, 6, 15).unwrap();
581 let delta_t_naive_date = DeltaT::estimate_from_date_like(&naive_date).unwrap();
582
583 // Test with NaiveDateTime
584 let naive_datetime = naive_date.and_hms_opt(12, 0, 0).unwrap();
585 let delta_t_naive_datetime = DeltaT::estimate_from_date_like(&naive_datetime).unwrap();
586
587 // Should all be identical since we only use year/month
588 assert_eq!(delta_t_fixed, delta_t_utc);
589 assert_eq!(delta_t_fixed, delta_t_naive_date);
590 assert_eq!(delta_t_fixed, delta_t_naive_datetime);
591
592 // Should match estimate_from_date
593 let delta_t_date = DeltaT::estimate_from_date(2024, 6).unwrap();
594 assert_eq!(delta_t_fixed, delta_t_date);
595
596 // Verify reasonable range for 2024
597 assert!(delta_t_fixed > 60.0 && delta_t_fixed < 80.0);
598 }
599
600 #[test]
601 fn test_specific_julian_dates() {
602 // Test some well-known dates
603
604 // Unix epoch: 1970-01-01 00:00:00 UTC
605 let unix_epoch = JulianDate::from_utc(1970, 1, 1, 0, 0, 0.0, 0.0).unwrap();
606 assert!((unix_epoch.julian_date() - 2_440_587.5).abs() < 1e-6);
607
608 // Y2K: 2000-01-01 00:00:00 UTC
609 let y2k = JulianDate::from_utc(2000, 1, 1, 0, 0, 0.0, 0.0).unwrap();
610 assert!((y2k.julian_date() - 2_451_544.5).abs() < 1e-6);
611 }
612}