1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
use serde::{Deserialize, Deserializer};
use std::collections::HashMap;
use uom::si::{
    energy::watt_hour,
    f64::{Energy, Power},
    power::{kilowatt, watt},
};

pub const REFRESH_TIME_IN_M: i64 = 15;

#[derive(Debug, Clone, Deserialize)]
pub(crate) struct SitesReply {
    sites: Sites,
}

impl SitesReply {
    pub fn sites(&self) -> &Vec<Site> {
        &self.sites.site
    }
}

#[derive(Debug, Clone, Deserialize)]
pub struct Sites {
    #[serde(rename = "count")]
    _count: u32,
    site: Vec<Site>,
}

#[derive(Debug, Clone, Deserialize)]
pub struct SiteDetails {
    pub details: Site,
}

#[derive(Debug, Clone, Deserialize)]
pub struct Site {
    /// the site id
    pub id: u32,
    /// the site name
    pub name: String,
    /// the account this site belongs to
    #[serde(rename = "accountId")]
    pub account_id: u32,
    /// the site status
    pub status: String,
    /// site peak power
    #[serde(rename = "peakPower", deserialize_with = "parse_power_kw")]
    pub peak_power: Power,
    #[serde(rename = "lastUpdateTime", deserialize_with = "parse_date")]
    pub last_update_time: chrono::NaiveDate,
    /// site installation date
    #[serde(rename = "installationDate", deserialize_with = "parse_date")]
    pub installation_date: chrono::NaiveDate, 
    /// permission to operate date
    #[serde(rename = "ptoDate")]
    pub pto_date: Option<String>,
    pub notes: String,
    /// site type
    #[serde(rename = "type")]
    pub site_type: String,
    /// includes country, state, city, address, secondary address, time zone and zip
    pub location: Location,
    #[serde(rename = "primaryModule")]
    pub primary_module: PrimaryModule,
    pub uris: HashMap<String, String>,
    ///  includes if this site is public and its public name
    #[serde(rename = "publicSettings")]
    pub public_settings: PublicSettings,
}

/// Location of a site
#[derive(Debug, Clone, Deserialize)]
pub struct Location {
    pub country: String,
    pub city: String,
    pub address: String,
    pub zip: String,
    #[serde(rename = "timeZone")]
    pub time_zone: String,
    #[serde(rename = "countryCode")]
    pub country_code: String,
}

/// The information about the model of the primary module of the site
#[derive(Debug, Clone, Deserialize)]
pub struct PrimaryModule {
    #[serde(rename = "manufacturerName")]
    pub manufacturer_name: String,
    #[serde(rename = "modelName")]
    pub model_name: String,
    #[serde(rename = "maximumPower", deserialize_with = "parse_power_kw")]
    pub maximum_power: Power,
    #[serde(rename = "temperatureCoef")]
    pub temperature_coef: f32,
}

/// Setting showing if information about this site is public
#[derive(Debug, Clone, Deserialize)]
pub struct PublicSettings {
    #[serde(rename = "isPublic")]
    pub public: bool,
}

/// The period defined by start_date and end_date that this site is producting energy
#[derive(Debug, Clone, Deserialize)]
pub struct DataPeriod {
    #[serde(rename = "startDate", deserialize_with = "parse_date")]
    pub start_date: chrono::NaiveDate,
    #[serde(rename = "endDate", deserialize_with = "parse_date")]
    pub end_date: chrono::NaiveDate,
}

impl DataPeriod {
    /// create a formatted [`String`] for the start date 
    /// in `%Y-%m-%d` format, i.e. `2023-11-9` for november 9th 2023
    pub fn formatted_start_date(&self) -> String {
        Self::formatted_date(&self.start_date)
    }

    /// create a formatted [`String`] for the end date 
    /// in `%Y-%m-%d` format, i.e. `2023-11-9` for november 9th 2023
    pub fn formatted_end_date(&self) -> String {
        Self::formatted_date(&self.end_date)
    }

    fn formatted_date(date: &chrono::NaiveDate) -> String {
        date.format("%Y-%m-%d").to_string()
    }
}

#[derive(Debug, Clone, Deserialize)]
pub(crate) struct DataPeriodReply {
    #[serde(rename = "dataPeriod")]
    pub(crate) data_period: DataPeriod,
}

#[derive(Debug, Clone, Deserialize)]
pub(crate) struct OverviewReply {
    pub(crate) overview: Overview,
}

/// The overview of a site includes the site current power, daily energy, monthly energy, yearly energy and life time energy.
#[derive(Debug, Clone, Deserialize)]
pub struct Overview {
    #[serde(rename = "lastUpdateTime", deserialize_with = "parse_date_time")]
    pub last_updated_time: chrono::NaiveDateTime,
    #[serde(rename = "lifeTimeData")]
    pub life_time_data: TimeData,
    #[serde(rename = "lastYearData")]
    pub last_year_data: TimeData,
    #[serde(rename = "lastMonthData")]
    pub last_month_data: TimeData,
    #[serde(rename = "lastDayData")]
    pub last_day_data: TimeData,
    #[serde(rename = "currentPower")]
    pub current_power: GeneratedPowerW,
    #[serde(rename = "measuredBy")]
    pub measured_by: String,
}

impl Overview {
    /// Calculates the next timestamp and the duration from now when new data 
    /// should be available on the API. It uses `last_update_time` and 15 
    /// minutes and 10 seconds as delta between updates
    pub fn estimated_next_update(&self) -> (chrono::NaiveDateTime, chrono::Duration) {
        // add 10s extra time
        let next = self.last_updated_time + chrono::Duration::seconds(REFRESH_TIME_IN_M * 60 + 10);
        let delta = next - chrono::Local::now().naive_local();
        (next, delta)
    }
}

/// Amount of [`Energy`] and optional the revenue of this energy
#[derive(Debug, Clone, Deserialize)]
pub struct TimeData {
    #[serde(deserialize_with = "parse_energy_wh")]
    pub energy: Energy,
    pub revenue: Option<f32>,
}

/// Generated power in Kw
#[derive(Debug, Clone, Deserialize)]
pub struct GeneratedPower {
    #[serde(deserialize_with = "parse_power_kw")]
    pub power: Power,
}

/// Generated power in W
#[derive(Debug, Clone, Deserialize)]
pub struct GeneratedPowerW {
    #[serde(deserialize_with = "parse_power_w")]
    pub power: Power,
}

#[derive(Debug, Clone, Deserialize)]
pub enum TimeUnit {
    QuarterOfAnHour,
    Hour,
    Day,
    Week,
    Month,
    Year,
}

const QUARTER_OF_AN_HOUR: &str = "QUARTER_OF_AN_HOUR";
const HOUR: &str = "HOUR";
const DAY: &str = "DAY";
const WEEK: &str = "WEEK";
const MONTH: &str = "MONTH";
const YEAR: &str = "YEAR";

impl TimeUnit {
    pub fn to_param(&self) -> &'static str {
        match self {
            TimeUnit::QuarterOfAnHour => QUARTER_OF_AN_HOUR,
            TimeUnit::Hour => HOUR,
            TimeUnit::Day => DAY,
            TimeUnit::Week => WEEK,
            TimeUnit::Month => MONTH,
            TimeUnit::Year => YEAR,
        }
    }

    pub fn from_const<'de, D>(deserializer: D) -> Result<TimeUnit, D::Error>
    where
        D: Deserializer<'de>,
    {
        let s: String = String::deserialize(deserializer)?;
        match s.as_str() {
            QUARTER_OF_AN_HOUR => Ok(TimeUnit::QuarterOfAnHour),
            HOUR => Ok(TimeUnit::Hour),
            DAY => Ok(TimeUnit::Day),
            WEEK => Ok(TimeUnit::Week),
            MONTH => Ok(TimeUnit::Month),
            YEAR => Ok(TimeUnit::Year),
            _ => Err(serde::de::Error::custom("Cannot parse value")),
        }
    }
}

#[derive(Debug, Clone, Deserialize)]
pub(crate) struct GeneratedEnergyReply {
    pub(crate) energy: GeneratedEnergy,
}

/// Contains all values of the generated energy per time unit
#[derive(Debug, Clone, Deserialize)]
pub struct GeneratedEnergy {
    #[serde(rename = "timeUnit", deserialize_with = "TimeUnit::from_const")]
    pub time_unit: TimeUnit,
    unit: String,
    values: Vec<RawGeneratedEnergyValue>,
}

impl GeneratedEnergy {
    /// returns the timestamped energy values
    pub fn values(&self) -> Vec<GeneratedEnergyValue> {
        self.values
            .iter()
            .map(|raw| raw.convert(&self.unit))
            .collect()
    }
}

// struct used to parse reply from API. Can be converted to 
//[`GeneratedEnergyValue`] to contain correct unit of measurement 
// using the unit value returned by [`GeneratedEnergy`]
#[derive(Debug, Clone, Deserialize, Copy)]
struct RawGeneratedEnergyValue {
    #[serde(deserialize_with = "parse_date_time")]
    date: chrono::NaiveDateTime,
    value: Option<f64>,
}

impl RawGeneratedEnergyValue {
    // converts f64 value to [`Energy`] using supplied `unit`. 
    // Currenty only `Wh` is supported
    fn convert(&self, unit: &str) -> GeneratedEnergyValue {
        let value = match unit {
            "Wh" => self.value.map(Energy::new::<watt_hour>),
            _ => todo!("unsupported unit: {unit}"),
        };
        GeneratedEnergyValue {
            date: self.date,
            value,
        }
    }
}

/// A timestamped [`Energy`] value. The value may be None when there wasn't a 
/// value at that timestamp
#[derive(Debug, Clone, Copy)]
pub struct GeneratedEnergyValue {
    /// timestamp of value
    pub date: chrono::NaiveDateTime,
    /// the value measures at the timestamp or None if there wasn't a value at
    /// that timestamp
    pub value: Option<Energy>,
}

// struct used to parse the API reply for Power
#[derive(Debug, Clone, Deserialize)]
pub(crate) struct GeneratedPowerReply {
    pub(crate) power: GeneratedPowerPerTimeUnit,
}

/// Contains all values of the generated power per time unit
#[derive(Debug, Clone, Deserialize)]
pub struct GeneratedPowerPerTimeUnit {
    #[serde(rename = "timeUnit", deserialize_with = "TimeUnit::from_const")]
    pub time_unit: TimeUnit,
    unit: String,
    values: Vec<RawGeneratedPowerValue>,
}

impl GeneratedPowerPerTimeUnit {
    /// returns all Power values that were present in the time period
    pub fn values(&self) -> Vec<GeneratedPowerValue> {
        self.values
            .iter()
            .map(|raw| raw.convert(&self.unit))
            .collect()
    }
}

#[derive(Debug, Clone, Deserialize)]
struct RawGeneratedPowerValue {
    #[serde(deserialize_with = "parse_date_time")]
    date: chrono::NaiveDateTime,
    value: Option<f64>,
}

impl RawGeneratedPowerValue {
    // converts f64 value to [`Power`] using supplied `unit`. 
    // Currenty only `W` is supported
    pub fn convert(&self, unit: &str) -> GeneratedPowerValue {
        let value: Option<Power> = match unit {
            "W" => self.value.map(Power::new::<watt>),
            _ => todo!("unsupported unit: {unit}"),
        };
        GeneratedPowerValue {
            date: self.date,
            value,
        }
    }
}

/// A timestamped [`Power`] value. The value may be None when there wasn't a 
/// value at that timestamp
#[derive(Debug, Clone)]
pub struct GeneratedPowerValue {
    pub date: chrono::NaiveDateTime,
    pub value: Option<Power>,
}

// parse a datetime value that the API returned to a [`NaiveDateTime`]
fn parse_date_time<'de, D>(deserializer: D) -> Result<chrono::NaiveDateTime, D::Error>
where
    D: Deserializer<'de>,
{
    let s: String = String::deserialize(deserializer)?;
    chrono::NaiveDateTime::parse_from_str(&s, "%Y-%m-%d %H:%M:%S")
        .map_err(|_| serde::de::Error::custom("Cannot parse value"))
}

// parse a datetime value that the API returned to a [`NaiveDate`]
fn parse_date<'de, D>(deserializer: D) -> Result<chrono::NaiveDate, D::Error>
where
    D: Deserializer<'de>,
{
    let s: String = String::deserialize(deserializer)?;
    chrono::NaiveDate::parse_from_str(&s, "%Y-%m-%d")
        .map_err(|_| serde::de::Error::custom("Cannot parse value"))
}

// parse a float value that the API returned to a [`Power`] value. Assumes the value is in kilowatt
fn parse_power_kw<'de, D>(deserializer: D) -> Result<Power, D::Error>
where
    D: Deserializer<'de>,
{
    let value: f64 = f64::deserialize(deserializer)?;
    Ok(Power::new::<kilowatt>(value))
}

// parse a float value that the API returned to a [`Power`] value. Assumes the value is in watt
fn parse_power_w<'de, D>(deserializer: D) -> Result<Power, D::Error>
where
    D: Deserializer<'de>,
{
    let value: f64 = f64::deserialize(deserializer)?;
    Ok(Power::new::<watt>(value))
}

// parse a float value that the API returned to a [`Energy`] value. Assumes the value is in watt-hours
fn parse_energy_wh<'de, D>(deserializer: D) -> Result<Energy, D::Error>
where
    D: Deserializer<'de>,
{
    let value: f64 = f64::deserialize(deserializer)?;
    Ok(Energy::new::<watt_hour>(value))
}

#[test]
fn test_parse_sites_data() {
    let output = r#"
       {"sites":{
           "count":1,
           "site":[
               {"id":1234123,
                "name":"MySiteName",
                "accountId":123456,
                "status":"Active",
                "peakPower":7.41,
                "lastUpdateTime":"2021-04-29",
                "installationDate":"2021-02-25",
                "ptoDate":null,
                "notes":"",
                "type":"Optimizers & Inverters",
                "location":{
                    "country":"Netherlands",
                    "city":"A city",
                    "address":"Some address",
                    "zip":"zipy",
                    "timeZone":"Europe/Amsterdam",
                    "countryCode":"NL"
                },
                "primaryModule":{
                    "manufacturerName":"JinkoSolar",
                    "modelName":"390",
                    "maximumPower":0.0,
                    "temperatureCoef":0.0
                },
                "uris":{
                    "SITE_IMAGE":"/site/1234123/siteImage/file12341234.jpg",
                    "DATA_PERIOD":"/site/1234123/dataPeriod",
                    "DETAILS":"/site/1234123/details",
                    "OVERVIEW":"/site/1234123/overview"
                },
                "publicSettings":{
                    "isPublic":false
                }}
            ]
        }
    }"#;

    let reply: SitesReply = serde_json::from_str(output).unwrap();
    println!("{:?}", reply);
    assert_eq!(reply.sites._count, 1);
    let power = Power::new::<kilowatt>(7.41);
    assert_eq!(power, reply.sites.site[0].peak_power);
}

#[test]
fn test_parse_data_period() {
    let reply = r#"{"dataPeriod":{"startDate":"2021-02-25","endDate":"2021-05-03"}}"#;
    println!("{}", reply);
    let parsed: DataPeriodReply = serde_json::from_str(reply).unwrap();
    assert_eq!("2021-02-25", parsed.data_period.formatted_start_date());
    assert_eq!("2021-05-03", parsed.data_period.formatted_end_date());
}

#[test]
fn test_energy() {
    use uom::si::energy::watt_hour;

    let reply = r#"
    {"energy":{
        "timeUnit":"MONTH",
        "unit":"Wh",
        "measuredBy":"INVERTER",
        "values":[
            {"date":"2021-02-01 00:00:00","value":45718.0},
            {"date":"2021-03-01 00:00:00","value":504857.0},
            {"date":"2021-04-01 00:00:00","value":800476.0},
            {"date":"2021-05-01 00:00:00","value":89913.0}]}}
    "#;

    let parsed: GeneratedEnergyReply = serde_json::from_str(reply).unwrap();
    assert_eq!(
        45718.0,
        parsed.energy.values()[0]
            .value
            .map(|e| e.get::<watt_hour>())
            .unwrap()
    );
}

#[test]
fn test_overview() {
    let reply = r#"
    {"overview":{
        "lastUpdateTime":"2023-11-09 10:28:56",
        "lifeTimeData":{"energy":1.9191678E7},
        "lastYearData":{"energy":6143745.0},
        "lastMonthData":{"energy":38709.0},
        "lastDayData":{"energy":2028.0},
        "currentPower":{"power":1173.7279},
        "measuredBy":"INVERTER"}
    }
    "#;

    let parsed: OverviewReply = serde_json::from_str(reply).unwrap();
    assert_eq!(
        Energy::new::<watt_hour>(1.9191678E7),
        parsed.overview.life_time_data.energy
    );
    assert_eq!(
        Power::new::<watt>(1173.7279),
        parsed.overview.current_power.power
    );
}

#[test]
fn test_energy_in_period() {
    let reply = r#"
    {"energy":{
        "timeUnit":"HOUR",
        "unit":"Wh",
        "measuredBy":"INVERTER",
        "values":[
            {"date":"2023-11-09 00:00:00","value":null},
            {"date":"2023-11-09 01:00:00","value":null},
            {"date":"2023-11-09 02:00:00","value":null},
            {"date":"2023-11-09 03:00:00","value":null},
            {"date":"2023-11-09 04:00:00","value":0.0},
            {"date":"2023-11-09 05:00:00","value":null},
            {"date":"2023-11-09 06:00:00","value":null},
            {"date":"2023-11-09 07:00:00","value":0.0},
            {"date":"2023-11-09 08:00:00","value":256.0},
            {"date":"2023-11-09 09:00:00","value":827.0},
            {"date":"2023-11-09 10:00:00","value":1390.0},
            {"date":"2023-11-09 11:00:00","value":222.0},
            {"date":"2023-11-09 12:00:00","value":null},
            {"date":"2023-11-09 13:00:00","value":null},
            {"date":"2023-11-09 14:00:00","value":null},
            {"date":"2023-11-09 15:00:00","value":null},
            {"date":"2023-11-09 16:00:00","value":null},
            {"date":"2023-11-09 17:00:00","value":null},
            {"date":"2023-11-09 18:00:00","value":null},
            {"date":"2023-11-09 19:00:00","value":null},
            {"date":"2023-11-09 20:00:00","value":null},
            {"date":"2023-11-09 21:00:00","value":null},
            {"date":"2023-11-09 22:00:00","value":null},
            {"date":"2023-11-09 23:00:00","value":null}
            ]
        }
    }
    "#;

    let parsed: GeneratedEnergyReply = serde_json::from_str(reply).unwrap();
    assert_eq!(24, parsed.energy.values().len());
    assert_eq!(
        Some(Energy::new::<watt_hour>(222.0)),
        parsed.energy.values()[11].value
    );
}

#[test]
fn test_power_in_period() {
    let reply = r#"
    {"power":{
        "timeUnit":"QUARTER_OF_AN_HOUR",
        "unit":"W",
        "measuredBy":"INVERTER",
        "values":[
            {"date":"2023-11-09 12:15:00","value":761.538},
            {"date":"2023-11-09 12:30:00","value":822.26117},
            {"date":"2023-11-09 12:45:00","value":746.9589},
            {"date":"2023-11-09 13:00:00","value":563.11},
            {"date":"2023-11-09 13:15:00","value":554.06836}
        ]
    }}
    "#;

    let parsed: GeneratedPowerReply = serde_json::from_str(reply).unwrap();
    assert_eq!(5, parsed.power.values().len());
    assert_eq!(
        Some(Power::new::<watt>(761.538)),
        parsed.power.values()[0].value
    );
}