1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
//! The `entry` module is a fundamental building block of Proof of History. It contains a
//! unique ID that is the hash of the Entry before it, plus the hash of the
//! transactions within it. Entries cannot be reordered, and its field `num_hashes`
//! represents an approximate amount of time since the last Entry was created.
use crate::poh::Poh;
use log::*;
use rayon::prelude::*;
use rayon::ThreadPool;
use serde::{Deserialize, Serialize};
use solana_measure::measure::Measure;
use solana_merkle_tree::MerkleTree;
use solana_metrics::*;
use solana_perf::cuda_runtime::PinnedVec;
use solana_perf::perf_libs;
use solana_perf::recycler::Recycler;
use solana_rayon_threadlimit::get_thread_count;
use solana_sdk::hash::Hash;
use solana_sdk::timing;
use solana_sdk::transaction::Transaction;
use std::cell::RefCell;
use std::cmp;
use std::sync::mpsc::{Receiver, Sender};
use std::sync::{Arc, Mutex};
use std::thread;
use std::thread::JoinHandle;
use std::time::Instant;

thread_local!(static PAR_THREAD_POOL: RefCell<ThreadPool> = RefCell::new(rayon::ThreadPoolBuilder::new()
                    .num_threads(get_thread_count())
                    .thread_name(|ix| format!("entry_{}", ix))
                    .build()
                    .unwrap()));

pub type EntrySender = Sender<Vec<Entry>>;
pub type EntryReceiver = Receiver<Vec<Entry>>;

/// Each Entry contains three pieces of data. The `num_hashes` field is the number
/// of hashes performed since the previous entry.  The `hash` field is the result
/// of hashing `hash` from the previous entry `num_hashes` times.  The `transactions`
/// field points to Transactions that took place shortly before `hash` was generated.
///
/// If you divide `num_hashes` by the amount of time it takes to generate a new hash, you
/// get a duration estimate since the last Entry. Since processing power increases
/// over time, one should expect the duration `num_hashes` represents to decrease proportionally.
/// An upper bound on Duration can be estimated by assuming each hash was generated by the
/// world's fastest processor at the time the entry was recorded. Or said another way, it
/// is physically not possible for a shorter duration to have occurred if one assumes the
/// hash was computed by the world's fastest processor at that time. The hash chain is both
/// a Verifiable Delay Function (VDF) and a Proof of Work (not to be confused with Proof of
/// Work consensus!)

#[derive(Serialize, Deserialize, Debug, Default, PartialEq, Eq, Clone)]
pub struct Entry {
    /// The number of hashes since the previous Entry ID.
    pub num_hashes: u64,

    /// The SHA-256 hash `num_hashes` after the previous Entry ID.
    pub hash: Hash,

    /// An unordered list of transactions that were observed before the Entry ID was
    /// generated. They may have been observed before a previous Entry ID but were
    /// pushed back into this list to ensure deterministic interpretation of the ledger.
    pub transactions: Vec<Transaction>,
}

impl Entry {
    /// Creates the next Entry `num_hashes` after `start_hash`.
    pub fn new(prev_hash: &Hash, mut num_hashes: u64, transactions: Vec<Transaction>) -> Self {
        // If you passed in transactions, but passed in num_hashes == 0, then
        // next_hash will generate the next hash and set num_hashes == 1
        if num_hashes == 0 && !transactions.is_empty() {
            num_hashes = 1;
        }

        let hash = next_hash(prev_hash, num_hashes, &transactions);
        Entry {
            num_hashes,
            hash,
            transactions,
        }
    }

    pub fn new_mut(
        start_hash: &mut Hash,
        num_hashes: &mut u64,
        transactions: Vec<Transaction>,
    ) -> Self {
        let entry = Self::new(start_hash, *num_hashes, transactions);
        *start_hash = entry.hash;
        *num_hashes = 0;

        entry
    }

    #[cfg(test)]
    pub fn new_tick(num_hashes: u64, hash: &Hash) -> Self {
        Entry {
            num_hashes,
            hash: *hash,
            transactions: vec![],
        }
    }

    /// Verifies self.hash is the result of hashing a `start_hash` `self.num_hashes` times.
    /// If the transaction is not a Tick, then hash that as well.
    pub fn verify(&self, start_hash: &Hash) -> bool {
        let ref_hash = next_hash(start_hash, self.num_hashes, &self.transactions);
        if self.hash != ref_hash {
            warn!(
                "next_hash is invalid expected: {:?} actual: {:?}",
                self.hash, ref_hash
            );
            return false;
        }
        true
    }

    pub fn is_tick(&self) -> bool {
        self.transactions.is_empty()
    }
}

pub fn hash_transactions(transactions: &[Transaction]) -> Hash {
    // a hash of a slice of transactions only needs to hash the signatures
    let signatures: Vec<_> = transactions
        .iter()
        .flat_map(|tx| tx.signatures.iter())
        .collect();
    let merkle_tree = MerkleTree::new(&signatures);
    if let Some(root_hash) = merkle_tree.get_root() {
        *root_hash
    } else {
        Hash::default()
    }
}

/// Creates the hash `num_hashes` after `start_hash`. If the transaction contains
/// a signature, the final hash will be a hash of both the previous ID and
/// the signature.  If num_hashes is zero and there's no transaction data,
///  start_hash is returned.
pub fn next_hash(start_hash: &Hash, num_hashes: u64, transactions: &[Transaction]) -> Hash {
    if num_hashes == 0 && transactions.is_empty() {
        return *start_hash;
    }

    let mut poh = Poh::new(*start_hash, None);
    poh.hash(num_hashes.saturating_sub(1));
    if transactions.is_empty() {
        poh.tick().unwrap().hash
    } else {
        poh.record(hash_transactions(transactions)).unwrap().hash
    }
}

pub struct EntryVerifyState {
    thread_h: Option<JoinHandle<u64>>,
    hashes: Option<Arc<Mutex<PinnedVec<Hash>>>>,
    verified: bool,
    tx_hashes: Vec<Option<Hash>>,
    start_time_ms: u64,
}

#[derive(Default, Clone)]
pub struct VerifyRecyclers {
    hash_recycler: Recycler<PinnedVec<Hash>>,
    tick_count_recycler: Recycler<PinnedVec<u64>>,
}

impl EntryVerifyState {
    pub fn finish_verify(&mut self, entries: &[Entry]) -> bool {
        if self.hashes.is_some() {
            let gpu_time_ms = self.thread_h.take().unwrap().join().unwrap();

            let mut verify_check_time = Measure::start("verify_check");
            let hashes = self.hashes.take().expect("hashes.as_ref");
            let hashes = Arc::try_unwrap(hashes)
                .expect("unwrap Arc")
                .into_inner()
                .expect("into_inner");
            let res = PAR_THREAD_POOL.with(|thread_pool| {
                thread_pool.borrow().install(|| {
                    hashes
                        .into_par_iter()
                        .zip(&self.tx_hashes)
                        .zip(entries)
                        .all(|((hash, tx_hash), answer)| {
                            if answer.num_hashes == 0 {
                                *hash == answer.hash
                            } else {
                                let mut poh = Poh::new(*hash, None);
                                if let Some(mixin) = tx_hash {
                                    poh.record(*mixin).unwrap().hash == answer.hash
                                } else {
                                    poh.tick().unwrap().hash == answer.hash
                                }
                            }
                        })
                })
            });

            verify_check_time.stop();
            inc_new_counter_warn!(
                "entry_verify-duration",
                (gpu_time_ms + verify_check_time.as_ms() + self.start_time_ms) as usize
            );
            res
        } else {
            self.verified
        }
    }
}

// an EntrySlice is a slice of Entries
pub trait EntrySlice {
    /// Verifies the hashes and counts of a slice of transactions are all consistent.
    fn verify_cpu(&self, start_hash: &Hash) -> EntryVerifyState;
    fn start_verify(&self, start_hash: &Hash, recyclers: VerifyRecyclers) -> EntryVerifyState;
    fn verify(&self, start_hash: &Hash) -> bool;
    /// Checks that each entry tick has the correct number of hashes. Entry slices do not
    /// necessarily end in a tick, so `tick_hash_count` is used to carry over the hash count
    /// for the next entry slice.
    fn verify_tick_hash_count(&self, tick_hash_count: &mut u64, hashes_per_tick: u64) -> bool;
    /// Counts tick entries
    fn tick_count(&self) -> u64;
}

impl EntrySlice for [Entry] {
    fn verify(&self, start_hash: &Hash) -> bool {
        self.start_verify(start_hash, VerifyRecyclers::default())
            .finish_verify(self)
    }
    fn verify_cpu(&self, start_hash: &Hash) -> EntryVerifyState {
        let now = Instant::now();
        let genesis = [Entry {
            num_hashes: 0,
            hash: *start_hash,
            transactions: vec![],
        }];
        let entry_pairs = genesis.par_iter().chain(self).zip(self);
        let res = PAR_THREAD_POOL.with(|thread_pool| {
            thread_pool.borrow().install(|| {
                entry_pairs.all(|(x0, x1)| {
                    let r = x1.verify(&x0.hash);
                    if !r {
                        warn!(
                            "entry invalid!: x0: {:?}, x1: {:?} num txs: {}",
                            x0.hash,
                            x1.hash,
                            x1.transactions.len()
                        );
                    }
                    r
                })
            })
        });
        inc_new_counter_warn!(
            "entry_verify-duration",
            timing::duration_as_ms(&now.elapsed()) as usize
        );
        EntryVerifyState {
            thread_h: None,
            verified: res,
            hashes: None,
            tx_hashes: vec![],
            start_time_ms: 0,
        }
    }

    fn start_verify(&self, start_hash: &Hash, recyclers: VerifyRecyclers) -> EntryVerifyState {
        let api = perf_libs::api();
        if api.is_none() {
            return self.verify_cpu(start_hash);
        }
        let api = api.unwrap();
        inc_new_counter_warn!("entry_verify-num_entries", self.len() as usize);

        let start = Instant::now();

        let genesis = [Entry {
            num_hashes: 0,
            hash: *start_hash,
            transactions: vec![],
        }];

        let hashes: Vec<Hash> = genesis
            .iter()
            .chain(self)
            .map(|entry| entry.hash)
            .take(self.len())
            .collect();

        let mut hashes_pinned = recyclers.hash_recycler.allocate("poh_verify_hash");
        hashes_pinned.set_pinnable();
        hashes_pinned.resize(hashes.len(), Hash::default());
        hashes_pinned.copy_from_slice(&hashes);

        let mut num_hashes_vec = recyclers
            .tick_count_recycler
            .allocate("poh_verify_num_hashes");
        num_hashes_vec.reserve_and_pin(cmp::max(1, self.len()));
        for entry in self {
            num_hashes_vec.push(entry.num_hashes.saturating_sub(1));
        }

        let length = self.len();
        let hashes = Arc::new(Mutex::new(hashes_pinned));
        let hashes_clone = hashes.clone();

        let gpu_verify_thread = thread::spawn(move || {
            let mut hashes = hashes_clone.lock().unwrap();
            let gpu_wait = Instant::now();
            let res;
            unsafe {
                res = (api.poh_verify_many)(
                    hashes.as_mut_ptr() as *mut u8,
                    num_hashes_vec.as_ptr(),
                    length,
                    1,
                );
            }
            if res != 0 {
                panic!("GPU PoH verify many failed");
            }
            inc_new_counter_warn!(
                "entry_verify-gpu_thread",
                timing::duration_as_ms(&gpu_wait.elapsed()) as usize
            );
            timing::duration_as_ms(&gpu_wait.elapsed())
        });

        let tx_hashes = PAR_THREAD_POOL.with(|thread_pool| {
            thread_pool.borrow().install(|| {
                self.into_par_iter()
                    .map(|entry| {
                        if entry.transactions.is_empty() {
                            None
                        } else {
                            Some(hash_transactions(&entry.transactions))
                        }
                    })
                    .collect()
            })
        });

        EntryVerifyState {
            thread_h: Some(gpu_verify_thread),
            verified: false,
            tx_hashes,
            start_time_ms: timing::duration_as_ms(&start.elapsed()),
            hashes: Some(hashes),
        }
    }

    fn verify_tick_hash_count(&self, tick_hash_count: &mut u64, hashes_per_tick: u64) -> bool {
        // When hashes_per_tick is 0, hashing is disabled.
        if hashes_per_tick == 0 {
            return true;
        }

        for entry in self {
            *tick_hash_count += entry.num_hashes;
            if entry.is_tick() {
                if *tick_hash_count != hashes_per_tick {
                    warn!(
                        "invalid tick hash count!: entry: {:#?}, tick_hash_count: {}, hashes_per_tick: {}",
                        entry,
                        tick_hash_count,
                        hashes_per_tick
                    );
                    return false;
                }
                *tick_hash_count = 0;
            }
        }
        *tick_hash_count < hashes_per_tick
    }

    fn tick_count(&self) -> u64 {
        self.iter().filter(|e| e.is_tick()).count() as u64
    }
}

pub fn next_entry_mut(start: &mut Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
    let entry = Entry::new(&start, num_hashes, transactions);
    *start = entry.hash;
    entry
}

pub fn create_ticks(num_ticks: u64, hashes_per_tick: u64, mut hash: Hash) -> Vec<Entry> {
    let mut ticks = Vec::with_capacity(num_ticks as usize);
    for _ in 0..num_ticks {
        let new_tick = next_entry_mut(&mut hash, hashes_per_tick, vec![]);
        ticks.push(new_tick);
    }

    ticks
}

/// Creates the next Tick or Transaction Entry `num_hashes` after `start_hash`.
pub fn next_entry(prev_hash: &Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
    assert!(num_hashes > 0 || transactions.is_empty());
    Entry {
        num_hashes,
        hash: next_hash(prev_hash, num_hashes, &transactions),
        transactions,
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::entry::Entry;
    use chrono::prelude::Utc;
    use solana_budget_program::budget_instruction;
    use solana_sdk::{
        hash::{hash, Hash},
        message::Message,
        signature::{Keypair, KeypairUtil},
        system_transaction,
        transaction::Transaction,
    };

    fn create_sample_payment(keypair: &Keypair, hash: Hash) -> Transaction {
        let pubkey = keypair.pubkey();
        let budget_contract = Keypair::new();
        let budget_pubkey = budget_contract.pubkey();
        let ixs = budget_instruction::payment(&pubkey, &pubkey, &budget_pubkey, 1);
        Transaction::new_signed_instructions(&[keypair, &budget_contract], ixs, hash)
    }

    fn create_sample_timestamp(keypair: &Keypair, hash: Hash) -> Transaction {
        let pubkey = keypair.pubkey();
        let ix = budget_instruction::apply_timestamp(&pubkey, &pubkey, &pubkey, Utc::now());
        Transaction::new_signed_instructions(&[keypair], vec![ix], hash)
    }

    fn create_sample_apply_signature(keypair: &Keypair, hash: Hash) -> Transaction {
        let pubkey = keypair.pubkey();
        let ix = budget_instruction::apply_signature(&pubkey, &pubkey, &pubkey);
        Transaction::new_signed_instructions(&[keypair], vec![ix], hash)
    }

    #[test]
    fn test_entry_verify() {
        let zero = Hash::default();
        let one = hash(&zero.as_ref());
        assert!(Entry::new_tick(0, &zero).verify(&zero)); // base case, never used
        assert!(!Entry::new_tick(0, &zero).verify(&one)); // base case, bad
        assert!(next_entry(&zero, 1, vec![]).verify(&zero)); // inductive step
        assert!(!next_entry(&zero, 1, vec![]).verify(&one)); // inductive step, bad
    }

    #[test]
    fn test_transaction_reorder_attack() {
        let zero = Hash::default();

        // First, verify entries
        let keypair = Keypair::new();
        let tx0 = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
        let tx1 = system_transaction::transfer(&keypair, &keypair.pubkey(), 1, zero);
        let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()]);
        assert!(e0.verify(&zero));

        // Next, swap two transactions and ensure verification fails.
        e0.transactions[0] = tx1; // <-- attack
        e0.transactions[1] = tx0;
        assert!(!e0.verify(&zero));
    }

    #[test]
    fn test_witness_reorder_attack() {
        let zero = Hash::default();

        // First, verify entries
        let keypair = Keypair::new();
        let tx0 = create_sample_timestamp(&keypair, zero);
        let tx1 = create_sample_apply_signature(&keypair, zero);
        let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()]);
        assert!(e0.verify(&zero));

        // Next, swap two witness transactions and ensure verification fails.
        e0.transactions[0] = tx1; // <-- attack
        e0.transactions[1] = tx0;
        assert!(!e0.verify(&zero));
    }

    #[test]
    fn test_next_entry() {
        let zero = Hash::default();
        let tick = next_entry(&zero, 1, vec![]);
        assert_eq!(tick.num_hashes, 1);
        assert_ne!(tick.hash, zero);

        let tick = next_entry(&zero, 0, vec![]);
        assert_eq!(tick.num_hashes, 0);
        assert_eq!(tick.hash, zero);

        let keypair = Keypair::new();
        let tx0 = create_sample_timestamp(&keypair, zero);
        let entry0 = next_entry(&zero, 1, vec![tx0.clone()]);
        assert_eq!(entry0.num_hashes, 1);
        assert_eq!(entry0.hash, next_hash(&zero, 1, &vec![tx0]));
    }

    #[test]
    #[should_panic]
    fn test_next_entry_panic() {
        let zero = Hash::default();
        let keypair = Keypair::new();
        let tx = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
        next_entry(&zero, 0, vec![tx]);
    }

    #[test]
    fn test_verify_slice() {
        solana_logger::setup();
        let zero = Hash::default();
        let one = hash(&zero.as_ref());
        assert!(vec![][..].verify(&zero)); // base case
        assert!(vec![Entry::new_tick(0, &zero)][..].verify(&zero)); // singleton case 1
        assert!(!vec![Entry::new_tick(0, &zero)][..].verify(&one)); // singleton case 2, bad
        assert!(vec![next_entry(&zero, 0, vec![]); 2][..].verify(&zero)); // inductive step

        let mut bad_ticks = vec![next_entry(&zero, 0, vec![]); 2];
        bad_ticks[1].hash = one;
        assert!(!bad_ticks.verify(&zero)); // inductive step, bad
    }

    #[test]
    fn test_verify_slice_with_hashes() {
        solana_logger::setup();
        let zero = Hash::default();
        let one = hash(&zero.as_ref());
        let two = hash(&one.as_ref());
        assert!(vec![][..].verify(&one)); // base case
        assert!(vec![Entry::new_tick(1, &two)][..].verify(&one)); // singleton case 1
        assert!(!vec![Entry::new_tick(1, &two)][..].verify(&two)); // singleton case 2, bad

        let mut ticks = vec![next_entry(&one, 1, vec![])];
        ticks.push(next_entry(&ticks.last().unwrap().hash, 1, vec![]));
        assert!(ticks.verify(&one)); // inductive step

        let mut bad_ticks = vec![next_entry(&one, 1, vec![])];
        bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![]));
        bad_ticks[1].hash = one;
        assert!(!bad_ticks.verify(&one)); // inductive step, bad
    }

    #[test]
    fn test_verify_slice_with_hashes_and_transactions() {
        solana_logger::setup();
        let zero = Hash::default();
        let one = hash(&zero.as_ref());
        let two = hash(&one.as_ref());
        let alice_pubkey = Keypair::default();
        let tx0 = create_sample_payment(&alice_pubkey, one);
        let tx1 = create_sample_timestamp(&alice_pubkey, one);
        assert!(vec![][..].verify(&one)); // base case
        assert!(vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&one)); // singleton case 1
        assert!(!vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&two)); // singleton case 2, bad

        let mut ticks = vec![next_entry(&one, 1, vec![tx0.clone()])];
        ticks.push(next_entry(
            &ticks.last().unwrap().hash,
            1,
            vec![tx1.clone()],
        ));
        assert!(ticks.verify(&one)); // inductive step

        let mut bad_ticks = vec![next_entry(&one, 1, vec![tx0])];
        bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![tx1]));
        bad_ticks[1].hash = one;
        assert!(!bad_ticks.verify(&one)); // inductive step, bad
    }

    #[test]
    fn test_verify_tick_hash_count() {
        let hashes_per_tick = 10;
        let keypairs: Vec<&Keypair> = Vec::new();
        let tx: Transaction =
            Transaction::new(&keypairs, Message::new(Vec::new()), Hash::default());
        let tx_entry = Entry::new(&Hash::default(), 1, vec![tx]);
        let full_tick_entry = Entry::new_tick(hashes_per_tick, &Hash::default());
        let partial_tick_entry = Entry::new_tick(hashes_per_tick - 1, &Hash::default());
        let no_hash_tick_entry = Entry::new_tick(0, &Hash::default());
        let single_hash_tick_entry = Entry::new_tick(1, &Hash::default());

        let no_ticks = vec![];
        let mut tick_hash_count = 0;
        assert!(no_ticks.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
        assert_eq!(tick_hash_count, 0);

        // validation is disabled when hashes_per_tick == 0
        let no_hash_tick = vec![no_hash_tick_entry.clone()];
        assert!(no_hash_tick.verify_tick_hash_count(&mut tick_hash_count, 0));
        assert_eq!(tick_hash_count, 0);

        // validation is disabled when hashes_per_tick == 0
        let tx_and_no_hash_tick = vec![tx_entry.clone(), no_hash_tick_entry];
        assert!(tx_and_no_hash_tick.verify_tick_hash_count(&mut tick_hash_count, 0));
        assert_eq!(tick_hash_count, 0);

        let single_tick = vec![full_tick_entry.clone()];
        assert!(single_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
        assert_eq!(tick_hash_count, 0);
        assert!(!single_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick - 1));
        assert_eq!(tick_hash_count, hashes_per_tick);
        tick_hash_count = 0;

        let ticks_and_txs = vec![tx_entry.clone(), partial_tick_entry.clone()];
        assert!(ticks_and_txs.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
        assert_eq!(tick_hash_count, 0);

        let partial_tick = vec![partial_tick_entry.clone()];
        assert!(!partial_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
        assert_eq!(tick_hash_count, hashes_per_tick - 1);
        tick_hash_count = 0;

        let tx_entries: Vec<Entry> = (0..hashes_per_tick - 1).map(|_| tx_entry.clone()).collect();
        let tx_entries_and_tick = [tx_entries, vec![single_hash_tick_entry]].concat();
        assert!(tx_entries_and_tick.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
        assert_eq!(tick_hash_count, 0);

        let too_many_tx_entries: Vec<Entry> =
            (0..hashes_per_tick).map(|_| tx_entry.clone()).collect();
        assert!(!too_many_tx_entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
        assert_eq!(tick_hash_count, hashes_per_tick);
    }
}