solana_entry/
entry.rs

1//! The `entry` module is a fundamental building block of Proof of History. It contains a
2//! unique ID that is the hash of the Entry before it, plus the hash of the
3//! transactions within it. Entries cannot be reordered, and its field `num_hashes`
4//! represents an approximate amount of time since the last Entry was created.
5use {
6    crate::poh::Poh,
7    crossbeam_channel::{Receiver, Sender},
8    dlopen2::symbor::{Container, SymBorApi, Symbol},
9    log::*,
10    rand::{thread_rng, Rng},
11    rayon::{prelude::*, ThreadPool},
12    serde::{Deserialize, Serialize},
13    solana_hash::Hash,
14    solana_measure::measure::Measure,
15    solana_merkle_tree::MerkleTree,
16    solana_metrics::*,
17    solana_packet::Meta,
18    solana_perf::{
19        cuda_runtime::PinnedVec,
20        packet::{Packet, PacketBatch, PacketBatchRecycler, PinnedPacketBatch, PACKETS_PER_BATCH},
21        perf_libs,
22        recycler::Recycler,
23        sigverify,
24    },
25    solana_rayon_threadlimit::get_max_thread_count,
26    solana_runtime_transaction::transaction_with_meta::TransactionWithMeta,
27    solana_transaction::{
28        versioned::VersionedTransaction, Transaction, TransactionVerificationMode,
29    },
30    solana_transaction_error::{TransactionError, TransactionResult as Result},
31    std::{
32        cmp,
33        ffi::OsStr,
34        iter::repeat_with,
35        sync::{Arc, Mutex, Once, OnceLock},
36        thread::{self, JoinHandle},
37        time::Instant,
38    },
39};
40
41pub type EntrySender = Sender<Vec<Entry>>;
42pub type EntryReceiver = Receiver<Vec<Entry>>;
43
44static API: OnceLock<Container<Api>> = OnceLock::new();
45
46pub fn init_poh() {
47    init(OsStr::new("libpoh-simd.so"));
48}
49
50fn init(name: &OsStr) {
51    static INIT_HOOK: Once = Once::new();
52
53    info!("Loading {:?}", name);
54    INIT_HOOK.call_once(|| {
55        let path;
56        let lib_name = if let Some(perf_libs_path) = solana_perf::perf_libs::locate_perf_libs() {
57            solana_perf::perf_libs::append_to_ld_library_path(
58                perf_libs_path.to_str().unwrap_or("").to_string(),
59            );
60            path = perf_libs_path.join(name);
61            path.as_os_str()
62        } else {
63            name
64        };
65
66        match unsafe { Container::load(lib_name) } {
67            Ok(api) => _ = API.set(api),
68            Err(err) => error!("Unable to load {lib_name:?}: {err}"),
69        }
70    })
71}
72
73pub fn api() -> Option<&'static Container<Api<'static>>> {
74    {
75        static INIT_HOOK: Once = Once::new();
76        INIT_HOOK.call_once(|| {
77            if std::env::var("TEST_PERF_LIBS").is_ok() {
78                init_poh()
79            }
80        });
81    }
82
83    API.get()
84}
85
86#[derive(SymBorApi)]
87pub struct Api<'a> {
88    pub poh_verify_many_simd_avx512skx:
89        Symbol<'a, unsafe extern "C" fn(hashes: *mut u8, num_hashes: *const u64)>,
90    pub poh_verify_many_simd_avx2:
91        Symbol<'a, unsafe extern "C" fn(hashes: *mut u8, num_hashes: *const u64)>,
92}
93
94/// Each Entry contains three pieces of data. The `num_hashes` field is the number
95/// of hashes performed since the previous entry.  The `hash` field is the result
96/// of hashing `hash` from the previous entry `num_hashes` times.  The `transactions`
97/// field points to Transactions that took place shortly before `hash` was generated.
98///
99/// If you multiply `num_hashes` by the amount of time it takes to generate a new hash, you
100/// get a duration estimate since the last `Entry`. Since processing power increases
101/// over time, one should expect the duration `num_hashes` represents to decrease proportionally.
102/// An upper bound on Duration can be estimated by assuming each hash was generated by the
103/// world's fastest processor at the time the entry was recorded. Or said another way, it
104/// is physically not possible for a shorter duration to have occurred if one assumes the
105/// hash was computed by the world's fastest processor at that time. The hash chain is both
106/// a Verifiable Delay Function (VDF) and a Proof of Work (not to be confused with Proof of
107/// Work consensus!)
108///
109/// The solana core protocol currently requires an `Entry` to contain `transactions` that are
110/// executable in parallel. Implemented in:
111///
112/// * For TPU: `solana_core::banking_stage::BankingStage::process_and_record_transactions()`
113/// * For TVU: `solana_core::replay_stage::ReplayStage::replay_blockstore_into_bank()`
114///
115/// All transactions in the `transactions` field have to follow the read/write locking restrictions
116/// with regard to the accounts they reference. A single account can be either written by a single
117/// transaction, or read by one or more transactions, but not both.
118///
119/// This enforcement is done via a call to `solana_runtime::accounts::Accounts::lock_accounts()`
120/// with the `txs` argument holding all the `transactions` in the `Entry`.
121#[derive(Serialize, Deserialize, Debug, Default, PartialEq, Eq, Clone)]
122pub struct Entry {
123    /// The number of hashes since the previous Entry ID.
124    pub num_hashes: u64,
125
126    /// The SHA-256 hash `num_hashes` after the previous Entry ID.
127    pub hash: Hash,
128
129    /// An unordered list of transactions that were observed before the Entry ID was
130    /// generated. They may have been observed before a previous Entry ID but were
131    /// pushed back into this list to ensure deterministic interpretation of the ledger.
132    pub transactions: Vec<VersionedTransaction>,
133}
134
135pub struct EntrySummary {
136    pub num_hashes: u64,
137    pub hash: Hash,
138    pub num_transactions: u64,
139}
140
141impl From<&Entry> for EntrySummary {
142    fn from(entry: &Entry) -> Self {
143        Self {
144            num_hashes: entry.num_hashes,
145            hash: entry.hash,
146            num_transactions: entry.transactions.len() as u64,
147        }
148    }
149}
150
151/// Typed entry to distinguish between transaction and tick entries
152pub enum EntryType<Tx: TransactionWithMeta> {
153    Transactions(Vec<Tx>),
154    Tick(Hash),
155}
156
157impl Entry {
158    /// Creates the next Entry `num_hashes` after `start_hash`.
159    pub fn new(prev_hash: &Hash, mut num_hashes: u64, transactions: Vec<Transaction>) -> Self {
160        // If you passed in transactions, but passed in num_hashes == 0, then
161        // next_hash will generate the next hash and set num_hashes == 1
162        if num_hashes == 0 && !transactions.is_empty() {
163            num_hashes = 1;
164        }
165
166        let transactions = transactions.into_iter().map(Into::into).collect::<Vec<_>>();
167        let hash = next_hash(prev_hash, num_hashes, &transactions);
168        Entry {
169            num_hashes,
170            hash,
171            transactions,
172        }
173    }
174
175    pub fn new_mut(
176        start_hash: &mut Hash,
177        num_hashes: &mut u64,
178        transactions: Vec<Transaction>,
179    ) -> Self {
180        let entry = Self::new(start_hash, *num_hashes, transactions);
181        *start_hash = entry.hash;
182        *num_hashes = 0;
183
184        entry
185    }
186
187    #[cfg(test)]
188    pub fn new_tick(num_hashes: u64, hash: &Hash) -> Self {
189        Entry {
190            num_hashes,
191            hash: *hash,
192            transactions: vec![],
193        }
194    }
195
196    /// Verifies self.hash is the result of hashing a `start_hash` `self.num_hashes` times.
197    /// If the transaction is not a Tick, then hash that as well.
198    pub fn verify(&self, start_hash: &Hash) -> bool {
199        let ref_hash = next_hash(start_hash, self.num_hashes, &self.transactions);
200        if self.hash != ref_hash {
201            warn!(
202                "next_hash is invalid expected: {:?} actual: {:?}",
203                self.hash, ref_hash
204            );
205            return false;
206        }
207        true
208    }
209
210    pub fn is_tick(&self) -> bool {
211        self.transactions.is_empty()
212    }
213}
214
215pub fn hash_transactions(transactions: &[VersionedTransaction]) -> Hash {
216    // a hash of a slice of transactions only needs to hash the signatures
217    let signatures: Vec<_> = transactions
218        .iter()
219        .flat_map(|tx| tx.signatures.iter())
220        .collect();
221    let merkle_tree = MerkleTree::new(&signatures);
222    if let Some(root_hash) = merkle_tree.get_root() {
223        *root_hash
224    } else {
225        Hash::default()
226    }
227}
228
229/// Creates the hash `num_hashes` after `start_hash`. If the transaction contains
230/// a signature, the final hash will be a hash of both the previous ID and
231/// the signature.  If num_hashes is zero and there's no transaction data,
232///  start_hash is returned.
233pub fn next_hash(
234    start_hash: &Hash,
235    num_hashes: u64,
236    transactions: &[VersionedTransaction],
237) -> Hash {
238    if num_hashes == 0 && transactions.is_empty() {
239        return *start_hash;
240    }
241
242    let mut poh = Poh::new(*start_hash, None);
243    poh.hash(num_hashes.saturating_sub(1));
244    if transactions.is_empty() {
245        poh.tick().unwrap().hash
246    } else {
247        poh.record(hash_transactions(transactions)).unwrap().hash
248    }
249}
250
251/// Last action required to verify an entry
252enum VerifyAction {
253    /// Mixin a hash before computing the last hash for a transaction entry
254    Mixin(Hash),
255    /// Compute one last hash for a tick entry
256    Tick,
257    /// No action needed (tick entry with no hashes)
258    None,
259}
260
261pub struct GpuVerificationData {
262    thread_h: Option<JoinHandle<u64>>,
263    hashes: Option<Arc<Mutex<PinnedVec<Hash>>>>,
264    verifications: Option<Vec<(VerifyAction, Hash)>>,
265}
266
267pub enum DeviceVerificationData {
268    Cpu(),
269    Gpu(GpuVerificationData),
270}
271
272pub struct EntryVerificationState {
273    verification_status: EntryVerificationStatus,
274    poh_duration_us: u64,
275    device_verification_data: DeviceVerificationData,
276}
277
278pub struct GpuSigVerificationData {
279    thread_h: Option<JoinHandle<(bool, u64)>>,
280}
281
282pub enum DeviceSigVerificationData {
283    Cpu(),
284    Gpu(GpuSigVerificationData),
285}
286
287pub struct EntrySigVerificationState<Tx: TransactionWithMeta> {
288    verification_status: EntryVerificationStatus,
289    entries: Option<Vec<EntryType<Tx>>>,
290    device_verification_data: DeviceSigVerificationData,
291    gpu_verify_duration_us: u64,
292}
293
294impl<Tx: TransactionWithMeta> EntrySigVerificationState<Tx> {
295    pub fn entries(&mut self) -> Option<Vec<EntryType<Tx>>> {
296        self.entries.take()
297    }
298    pub fn finish_verify(&mut self) -> bool {
299        match &mut self.device_verification_data {
300            DeviceSigVerificationData::Gpu(verification_state) => {
301                let (verified, gpu_time_us) =
302                    verification_state.thread_h.take().unwrap().join().unwrap();
303                self.gpu_verify_duration_us = gpu_time_us;
304                self.verification_status = if verified {
305                    EntryVerificationStatus::Success
306                } else {
307                    EntryVerificationStatus::Failure
308                };
309                verified
310            }
311            DeviceSigVerificationData::Cpu() => {
312                self.verification_status == EntryVerificationStatus::Success
313            }
314        }
315    }
316    pub fn status(&self) -> EntryVerificationStatus {
317        self.verification_status
318    }
319    pub fn gpu_verify_duration(&self) -> u64 {
320        self.gpu_verify_duration_us
321    }
322}
323
324#[derive(Default, Clone)]
325pub struct VerifyRecyclers {
326    hash_recycler: Recycler<PinnedVec<Hash>>,
327    tick_count_recycler: Recycler<PinnedVec<u64>>,
328    packet_recycler: PacketBatchRecycler,
329    out_recycler: Recycler<PinnedVec<u8>>,
330    tx_offset_recycler: Recycler<sigverify::TxOffset>,
331}
332
333#[derive(PartialEq, Eq, Clone, Copy, Debug)]
334pub enum EntryVerificationStatus {
335    Failure,
336    Success,
337    Pending,
338}
339
340impl EntryVerificationState {
341    pub fn status(&self) -> EntryVerificationStatus {
342        self.verification_status
343    }
344
345    pub fn poh_duration_us(&self) -> u64 {
346        self.poh_duration_us
347    }
348
349    pub fn finish_verify(&mut self, thread_pool: &ThreadPool) -> bool {
350        match &mut self.device_verification_data {
351            DeviceVerificationData::Gpu(verification_state) => {
352                let gpu_time_us = verification_state.thread_h.take().unwrap().join().unwrap();
353
354                let mut verify_check_time = Measure::start("verify_check");
355                let hashes = verification_state.hashes.take().unwrap();
356                let hashes = Arc::try_unwrap(hashes)
357                    .expect("unwrap Arc")
358                    .into_inner()
359                    .expect("into_inner");
360                let res = thread_pool.install(|| {
361                    hashes
362                        .into_par_iter()
363                        .cloned()
364                        .zip(verification_state.verifications.take().unwrap())
365                        .all(|(hash, (action, expected))| {
366                            let actual = match action {
367                                VerifyAction::Mixin(mixin) => {
368                                    Poh::new(hash, None).record(mixin).unwrap().hash
369                                }
370                                VerifyAction::Tick => Poh::new(hash, None).tick().unwrap().hash,
371                                VerifyAction::None => hash,
372                            };
373                            actual == expected
374                        })
375                });
376                verify_check_time.stop();
377                self.poh_duration_us += gpu_time_us + verify_check_time.as_us();
378
379                self.verification_status = if res {
380                    EntryVerificationStatus::Success
381                } else {
382                    EntryVerificationStatus::Failure
383                };
384                res
385            }
386            DeviceVerificationData::Cpu() => {
387                self.verification_status == EntryVerificationStatus::Success
388            }
389        }
390    }
391}
392
393pub fn verify_transactions<Tx: TransactionWithMeta + Send + Sync>(
394    entries: Vec<Entry>,
395    thread_pool: &ThreadPool,
396    verify: Arc<dyn Fn(VersionedTransaction) -> Result<Tx> + Send + Sync>,
397) -> Result<Vec<EntryType<Tx>>> {
398    thread_pool.install(|| {
399        entries
400            .into_par_iter()
401            .map(|entry| {
402                if entry.transactions.is_empty() {
403                    Ok(EntryType::Tick(entry.hash))
404                } else {
405                    Ok(EntryType::Transactions(
406                        entry
407                            .transactions
408                            .into_par_iter()
409                            .map(verify.as_ref())
410                            .collect::<Result<Vec<_>>>()?,
411                    ))
412                }
413            })
414            .collect()
415    })
416}
417
418pub fn start_verify_transactions<Tx: TransactionWithMeta + Send + Sync + 'static>(
419    entries: Vec<Entry>,
420    skip_verification: bool,
421    thread_pool: &ThreadPool,
422    verify_recyclers: VerifyRecyclers,
423    verify: Arc<
424        dyn Fn(VersionedTransaction, TransactionVerificationMode) -> Result<Tx> + Send + Sync,
425    >,
426) -> Result<EntrySigVerificationState<Tx>> {
427    let api = perf_libs::api();
428
429    // Use the CPU if we have too few transactions for GPU signature verification to be worth it.
430    // We will also use the CPU if no acceleration API is used or if we're skipping
431    // the signature verification as we'd have nothing to do on the GPU in that case.
432    // TODO: make the CPU-to GPU crossover point dynamic, perhaps based on similar future
433    // heuristics to what might be used in sigverify::ed25519_verify when a dynamic crossover
434    // is introduced for that function (see TODO in sigverify::ed25519_verify)
435    let use_cpu = skip_verification
436        || api.is_none()
437        || entries
438            .iter()
439            .try_fold(0, |accum: usize, entry: &Entry| -> Option<usize> {
440                if accum.saturating_add(entry.transactions.len()) < 512 {
441                    Some(accum.saturating_add(entry.transactions.len()))
442                } else {
443                    None
444                }
445            })
446            .is_some();
447
448    if use_cpu {
449        start_verify_transactions_cpu(entries, skip_verification, thread_pool, verify)
450    } else {
451        start_verify_transactions_gpu(entries, verify_recyclers, thread_pool, verify)
452    }
453}
454
455fn start_verify_transactions_cpu<Tx: TransactionWithMeta + Send + Sync + 'static>(
456    entries: Vec<Entry>,
457    skip_verification: bool,
458    thread_pool: &ThreadPool,
459    verify: Arc<
460        dyn Fn(VersionedTransaction, TransactionVerificationMode) -> Result<Tx> + Send + Sync,
461    >,
462) -> Result<EntrySigVerificationState<Tx>> {
463    let verify_func = {
464        let mode = if skip_verification {
465            TransactionVerificationMode::HashOnly
466        } else {
467            TransactionVerificationMode::FullVerification
468        };
469
470        move |versioned_tx| verify(versioned_tx, mode)
471    };
472
473    let entries = verify_transactions(entries, thread_pool, Arc::new(verify_func))?;
474
475    Ok(EntrySigVerificationState {
476        verification_status: EntryVerificationStatus::Success,
477        entries: Some(entries),
478        device_verification_data: DeviceSigVerificationData::Cpu(),
479        gpu_verify_duration_us: 0,
480    })
481}
482
483fn start_verify_transactions_gpu<Tx: TransactionWithMeta + Send + Sync + 'static>(
484    entries: Vec<Entry>,
485    verify_recyclers: VerifyRecyclers,
486    thread_pool: &ThreadPool,
487    verify: Arc<
488        dyn Fn(VersionedTransaction, TransactionVerificationMode) -> Result<Tx> + Send + Sync,
489    >,
490) -> Result<EntrySigVerificationState<Tx>> {
491    let verify_func = {
492        move |versioned_tx: VersionedTransaction| -> Result<Tx> {
493            verify(versioned_tx, TransactionVerificationMode::HashOnly)
494        }
495    };
496
497    let entries = verify_transactions(entries, thread_pool, Arc::new(verify_func))?;
498
499    let transactions = entries
500        .iter()
501        .filter_map(|entry_type| match entry_type {
502            EntryType::Tick(_) => None,
503            EntryType::Transactions(transactions) => Some(transactions),
504        })
505        .flatten()
506        .collect::<Vec<_>>();
507
508    if transactions.is_empty() {
509        return Ok(EntrySigVerificationState {
510            verification_status: EntryVerificationStatus::Success,
511            entries: Some(entries),
512            device_verification_data: DeviceSigVerificationData::Cpu(),
513            gpu_verify_duration_us: 0,
514        });
515    }
516
517    let packet_batches = thread_pool.install(|| {
518        transactions
519            .par_chunks(PACKETS_PER_BATCH)
520            .map(|transaction_chunk| {
521                let num_transactions = transaction_chunk.len();
522                let mut packet_batch = PinnedPacketBatch::new_with_recycler(
523                    &verify_recyclers.packet_recycler,
524                    num_transactions,
525                    "entry-sig-verify",
526                );
527                // We use set_len here instead of resize(num_txs, Packet::default()), to save
528                // memory bandwidth and avoid writing a large amount of data that will be overwritten
529                // soon afterwards. As well, Packet::default() actually leaves the packet data
530                // uninitialized, so the initialization would simply write junk into
531                // the vector anyway.
532                unsafe {
533                    packet_batch.set_len(num_transactions);
534                }
535                let transaction_iter = transaction_chunk
536                    .iter()
537                    .map(|tx| tx.to_versioned_transaction());
538
539                let res = packet_batch
540                    .iter_mut()
541                    .zip(transaction_iter)
542                    .all(|(packet, tx)| {
543                        *packet.meta_mut() = Meta::default();
544                        Packet::populate_packet(packet, None, &tx).is_ok()
545                    });
546                if res {
547                    Ok(PacketBatch::from(packet_batch))
548                } else {
549                    Err(TransactionError::SanitizeFailure)
550                }
551            })
552            .collect::<Result<Vec<_>>>()
553    });
554    let mut packet_batches = packet_batches?;
555
556    let tx_offset_recycler = verify_recyclers.tx_offset_recycler;
557    let out_recycler = verify_recyclers.out_recycler;
558    let num_packets = transactions.len();
559    let gpu_verify_thread = thread::Builder::new()
560        .name("solGpuSigVerify".into())
561        .spawn(move || {
562            let mut verify_time = Measure::start("sigverify");
563            sigverify::ed25519_verify(
564                &mut packet_batches,
565                &tx_offset_recycler,
566                &out_recycler,
567                false,
568                num_packets,
569            );
570            let verified = packet_batches
571                .iter()
572                .all(|batch| batch.iter().all(|p| !p.meta().discard()));
573            verify_time.stop();
574            (verified, verify_time.as_us())
575        })
576        .unwrap();
577
578    Ok(EntrySigVerificationState {
579        verification_status: EntryVerificationStatus::Pending,
580        entries: Some(entries),
581        device_verification_data: DeviceSigVerificationData::Gpu(GpuSigVerificationData {
582            thread_h: Some(gpu_verify_thread),
583        }),
584        gpu_verify_duration_us: 0,
585    })
586}
587
588fn compare_hashes(computed_hash: Hash, ref_entry: &Entry) -> bool {
589    let actual = if !ref_entry.transactions.is_empty() {
590        let tx_hash = hash_transactions(&ref_entry.transactions);
591        let mut poh = Poh::new(computed_hash, None);
592        poh.record(tx_hash).unwrap().hash
593    } else if ref_entry.num_hashes > 0 {
594        let mut poh = Poh::new(computed_hash, None);
595        poh.tick().unwrap().hash
596    } else {
597        computed_hash
598    };
599    actual == ref_entry.hash
600}
601
602// an EntrySlice is a slice of Entries
603pub trait EntrySlice {
604    /// Verifies the hashes and counts of a slice of transactions are all consistent.
605    fn verify_cpu(&self, start_hash: &Hash, thread_pool: &ThreadPool) -> EntryVerificationState;
606    fn verify_cpu_generic(
607        &self,
608        start_hash: &Hash,
609        thread_pool: &ThreadPool,
610    ) -> EntryVerificationState;
611    fn verify_cpu_x86_simd(
612        &self,
613        start_hash: &Hash,
614        simd_len: usize,
615        thread_pool: &ThreadPool,
616    ) -> EntryVerificationState;
617    fn start_verify(
618        &self,
619        start_hash: &Hash,
620        thread_pool: &ThreadPool,
621        recyclers: VerifyRecyclers,
622    ) -> EntryVerificationState;
623    fn verify(&self, start_hash: &Hash, thread_pool: &ThreadPool) -> bool;
624    /// Checks that each entry tick has the correct number of hashes. Entry slices do not
625    /// necessarily end in a tick, so `tick_hash_count` is used to carry over the hash count
626    /// for the next entry slice.
627    fn verify_tick_hash_count(&self, tick_hash_count: &mut u64, hashes_per_tick: u64) -> bool;
628    /// Counts tick entries
629    fn tick_count(&self) -> u64;
630}
631
632impl EntrySlice for [Entry] {
633    fn verify(&self, start_hash: &Hash, thread_pool: &ThreadPool) -> bool {
634        self.start_verify(start_hash, thread_pool, VerifyRecyclers::default())
635            .finish_verify(thread_pool)
636    }
637
638    fn verify_cpu_generic(
639        &self,
640        start_hash: &Hash,
641        thread_pool: &ThreadPool,
642    ) -> EntryVerificationState {
643        let now = Instant::now();
644        let genesis = [Entry {
645            num_hashes: 0,
646            hash: *start_hash,
647            transactions: vec![],
648        }];
649        let entry_pairs = genesis.par_iter().chain(self).zip(self);
650        let res = thread_pool.install(|| {
651            entry_pairs.all(|(x0, x1)| {
652                let r = x1.verify(&x0.hash);
653                if !r {
654                    warn!(
655                        "entry invalid!: x0: {:?}, x1: {:?} num txs: {}",
656                        x0.hash,
657                        x1.hash,
658                        x1.transactions.len()
659                    );
660                }
661                r
662            })
663        });
664        let poh_duration_us = now.elapsed().as_micros() as u64;
665        EntryVerificationState {
666            verification_status: if res {
667                EntryVerificationStatus::Success
668            } else {
669                EntryVerificationStatus::Failure
670            },
671            poh_duration_us,
672            device_verification_data: DeviceVerificationData::Cpu(),
673        }
674    }
675
676    fn verify_cpu_x86_simd(
677        &self,
678        start_hash: &Hash,
679        simd_len: usize,
680        thread_pool: &ThreadPool,
681    ) -> EntryVerificationState {
682        use solana_hash::HASH_BYTES;
683        let now = Instant::now();
684        let genesis = [Entry {
685            num_hashes: 0,
686            hash: *start_hash,
687            transactions: vec![],
688        }];
689
690        let aligned_len = self.len().div_ceil(simd_len) * simd_len;
691        let mut hashes_bytes = vec![0u8; HASH_BYTES * aligned_len];
692        genesis
693            .iter()
694            .chain(self)
695            .enumerate()
696            .for_each(|(i, entry)| {
697                if i < self.len() {
698                    let start = i * HASH_BYTES;
699                    let end = start + HASH_BYTES;
700                    hashes_bytes[start..end].copy_from_slice(&entry.hash.to_bytes());
701                }
702            });
703        let mut hashes_chunked: Vec<_> = hashes_bytes.chunks_mut(simd_len * HASH_BYTES).collect();
704
705        let mut num_hashes: Vec<u64> = self
706            .iter()
707            .map(|entry| entry.num_hashes.saturating_sub(1))
708            .collect();
709        num_hashes.resize(aligned_len, 0);
710        let num_hashes: Vec<_> = num_hashes.chunks(simd_len).collect();
711
712        let res = thread_pool.install(|| {
713            hashes_chunked
714                .par_iter_mut()
715                .zip(num_hashes)
716                .enumerate()
717                .all(|(i, (chunk, num_hashes))| {
718                    match simd_len {
719                        8 => unsafe {
720                            (api().unwrap().poh_verify_many_simd_avx2)(
721                                chunk.as_mut_ptr(),
722                                num_hashes.as_ptr(),
723                            );
724                        },
725                        16 => unsafe {
726                            (api().unwrap().poh_verify_many_simd_avx512skx)(
727                                chunk.as_mut_ptr(),
728                                num_hashes.as_ptr(),
729                            );
730                        },
731                        _ => {
732                            panic!("unsupported simd len: {simd_len}");
733                        }
734                    }
735                    let entry_start = i * simd_len;
736                    // The last chunk may produce indexes larger than what we have in the reference entries
737                    // because it is aligned to simd_len.
738                    let entry_end = std::cmp::min(entry_start + simd_len, self.len());
739                    self[entry_start..entry_end]
740                        .iter()
741                        .enumerate()
742                        .all(|(j, ref_entry)| {
743                            let start = j * HASH_BYTES;
744                            let end = start + HASH_BYTES;
745                            let hash = <[u8; HASH_BYTES]>::try_from(&chunk[start..end])
746                                .map(Hash::new_from_array)
747                                .unwrap();
748                            compare_hashes(hash, ref_entry)
749                        })
750                })
751        });
752        let poh_duration_us = now.elapsed().as_micros() as u64;
753        EntryVerificationState {
754            verification_status: if res {
755                EntryVerificationStatus::Success
756            } else {
757                EntryVerificationStatus::Failure
758            },
759            poh_duration_us,
760            device_verification_data: DeviceVerificationData::Cpu(),
761        }
762    }
763
764    fn verify_cpu(&self, start_hash: &Hash, thread_pool: &ThreadPool) -> EntryVerificationState {
765        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
766        let (has_avx2, has_avx512) = (
767            is_x86_feature_detected!("avx2"),
768            is_x86_feature_detected!("avx512f"),
769        );
770        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
771        let (has_avx2, has_avx512) = (false, false);
772
773        if api().is_some() {
774            if has_avx512 && self.len() >= 128 {
775                self.verify_cpu_x86_simd(start_hash, 16, thread_pool)
776            } else if has_avx2 && self.len() >= 48 {
777                self.verify_cpu_x86_simd(start_hash, 8, thread_pool)
778            } else {
779                self.verify_cpu_generic(start_hash, thread_pool)
780            }
781        } else {
782            self.verify_cpu_generic(start_hash, thread_pool)
783        }
784    }
785
786    fn start_verify(
787        &self,
788        start_hash: &Hash,
789        thread_pool: &ThreadPool,
790        recyclers: VerifyRecyclers,
791    ) -> EntryVerificationState {
792        let start = Instant::now();
793        let Some(api) = perf_libs::api() else {
794            return self.verify_cpu(start_hash, thread_pool);
795        };
796        inc_new_counter_info!("entry_verify-num_entries", self.len());
797
798        let genesis = [Entry {
799            num_hashes: 0,
800            hash: *start_hash,
801            transactions: vec![],
802        }];
803
804        let hashes: Vec<Hash> = genesis
805            .iter()
806            .chain(self)
807            .map(|entry| entry.hash)
808            .take(self.len())
809            .collect();
810
811        let mut hashes_pinned = recyclers.hash_recycler.allocate("poh_verify_hash");
812        hashes_pinned.set_pinnable();
813        hashes_pinned.resize(hashes.len(), Hash::default());
814        hashes_pinned.copy_from_slice(&hashes);
815
816        let mut num_hashes_vec = recyclers
817            .tick_count_recycler
818            .allocate("poh_verify_num_hashes");
819        num_hashes_vec.reserve_and_pin(cmp::max(1, self.len()));
820        for entry in self {
821            num_hashes_vec.push(entry.num_hashes.saturating_sub(1));
822        }
823
824        let length = self.len();
825        let hashes = Arc::new(Mutex::new(hashes_pinned));
826        let hashes_clone = hashes.clone();
827
828        let gpu_verify_thread = thread::Builder::new()
829            .name("solGpuPohVerify".into())
830            .spawn(move || {
831                let mut hashes = hashes_clone.lock().unwrap();
832                let gpu_wait = Instant::now();
833                let res;
834                unsafe {
835                    res = (api.poh_verify_many)(
836                        hashes.as_mut_ptr() as *mut u8,
837                        num_hashes_vec.as_ptr(),
838                        length,
839                        1,
840                    );
841                }
842                assert!(res == 0, "GPU PoH verify many failed");
843                inc_new_counter_info!(
844                    "entry_verify-gpu_thread",
845                    gpu_wait.elapsed().as_micros() as usize
846                );
847                gpu_wait.elapsed().as_micros() as u64
848            })
849            .unwrap();
850
851        let verifications = thread_pool.install(|| {
852            self.into_par_iter()
853                .map(|entry| {
854                    let answer = entry.hash;
855                    let action = if entry.transactions.is_empty() {
856                        if entry.num_hashes == 0 {
857                            VerifyAction::None
858                        } else {
859                            VerifyAction::Tick
860                        }
861                    } else {
862                        VerifyAction::Mixin(hash_transactions(&entry.transactions))
863                    };
864                    (action, answer)
865                })
866                .collect()
867        });
868        let device_verification_data = DeviceVerificationData::Gpu(GpuVerificationData {
869            thread_h: Some(gpu_verify_thread),
870            verifications: Some(verifications),
871            hashes: Some(hashes),
872        });
873        EntryVerificationState {
874            verification_status: EntryVerificationStatus::Pending,
875            poh_duration_us: start.elapsed().as_micros() as u64,
876            device_verification_data,
877        }
878    }
879
880    fn verify_tick_hash_count(&self, tick_hash_count: &mut u64, hashes_per_tick: u64) -> bool {
881        // When hashes_per_tick is 0, hashing is disabled.
882        if hashes_per_tick == 0 {
883            return true;
884        }
885
886        for entry in self {
887            *tick_hash_count = tick_hash_count.saturating_add(entry.num_hashes);
888            if entry.is_tick() {
889                if *tick_hash_count != hashes_per_tick {
890                    warn!(
891                        "invalid tick hash count!: entry: {:#?}, tick_hash_count: {}, hashes_per_tick: {}",
892                        entry,
893                        tick_hash_count,
894                        hashes_per_tick
895                    );
896                    return false;
897                }
898                *tick_hash_count = 0;
899            }
900        }
901        *tick_hash_count < hashes_per_tick
902    }
903
904    fn tick_count(&self) -> u64 {
905        self.iter().filter(|e| e.is_tick()).count() as u64
906    }
907}
908
909pub fn next_entry_mut(start: &mut Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
910    let entry = Entry::new(start, num_hashes, transactions);
911    *start = entry.hash;
912    entry
913}
914
915pub fn create_ticks(num_ticks: u64, hashes_per_tick: u64, mut hash: Hash) -> Vec<Entry> {
916    repeat_with(|| next_entry_mut(&mut hash, hashes_per_tick, vec![]))
917        .take(num_ticks as usize)
918        .collect()
919}
920
921pub fn create_random_ticks(num_ticks: u64, max_hashes_per_tick: u64, mut hash: Hash) -> Vec<Entry> {
922    repeat_with(|| {
923        let hashes_per_tick = thread_rng().gen_range(1..max_hashes_per_tick);
924        next_entry_mut(&mut hash, hashes_per_tick, vec![])
925    })
926    .take(num_ticks as usize)
927    .collect()
928}
929
930/// Creates the next Tick or Transaction Entry `num_hashes` after `start_hash`.
931pub fn next_entry(prev_hash: &Hash, num_hashes: u64, transactions: Vec<Transaction>) -> Entry {
932    let transactions = transactions.into_iter().map(Into::into).collect::<Vec<_>>();
933    next_versioned_entry(prev_hash, num_hashes, transactions)
934}
935
936/// Creates the next Tick or Transaction Entry `num_hashes` after `start_hash`.
937pub fn next_versioned_entry(
938    prev_hash: &Hash,
939    num_hashes: u64,
940    transactions: Vec<VersionedTransaction>,
941) -> Entry {
942    assert!(num_hashes > 0 || transactions.is_empty());
943    Entry {
944        num_hashes,
945        hash: next_hash(prev_hash, num_hashes, &transactions),
946        transactions,
947    }
948}
949
950pub fn thread_pool_for_tests() -> ThreadPool {
951    // Allocate fewer threads for unit tests
952    // Unit tests typically aren't creating massive blocks to verify, and
953    // multiple tests could be running in parallel so any further parallelism
954    // will do more harm than good
955    rayon::ThreadPoolBuilder::new()
956        .num_threads(4)
957        .thread_name(|i| format!("solEntryTest{i:02}"))
958        .build()
959        .expect("new rayon threadpool")
960}
961
962pub fn thread_pool_for_benches() -> ThreadPool {
963    rayon::ThreadPoolBuilder::new()
964        .num_threads(get_max_thread_count())
965        .thread_name(|i| format!("solEntryBnch{i:02}"))
966        .build()
967        .expect("new rayon threadpool")
968}
969
970#[cfg(test)]
971mod tests {
972    use {
973        super::*,
974        agave_reserved_account_keys::ReservedAccountKeys,
975        solana_hash::Hash,
976        solana_keypair::Keypair,
977        solana_message::SimpleAddressLoader,
978        solana_perf::test_tx::{test_invalid_tx, test_tx},
979        solana_pubkey::Pubkey,
980        solana_runtime_transaction::runtime_transaction::RuntimeTransaction,
981        solana_sha256_hasher::hash,
982        solana_signer::Signer,
983        solana_system_transaction as system_transaction,
984        solana_transaction::{
985            sanitized::{MessageHash, SanitizedTransaction},
986            versioned::VersionedTransaction,
987        },
988        solana_transaction_error::TransactionResult as Result,
989    };
990
991    #[test]
992    fn test_entry_verify() {
993        let zero = Hash::default();
994        let one = hash(zero.as_ref());
995        assert!(Entry::new_tick(0, &zero).verify(&zero)); // base case, never used
996        assert!(!Entry::new_tick(0, &zero).verify(&one)); // base case, bad
997        assert!(next_entry(&zero, 1, vec![]).verify(&zero)); // inductive step
998        assert!(!next_entry(&zero, 1, vec![]).verify(&one)); // inductive step, bad
999    }
1000
1001    fn test_verify_transactions<Tx: TransactionWithMeta + Send + Sync + 'static>(
1002        entries: Vec<Entry>,
1003        skip_verification: bool,
1004        verify_recyclers: VerifyRecyclers,
1005        thread_pool: &ThreadPool,
1006        verify: Arc<
1007            dyn Fn(VersionedTransaction, TransactionVerificationMode) -> Result<Tx> + Send + Sync,
1008        >,
1009    ) -> bool {
1010        let verify_func = {
1011            let verify = verify.clone();
1012            let verification_mode = if skip_verification {
1013                TransactionVerificationMode::HashOnly
1014            } else {
1015                TransactionVerificationMode::FullVerification
1016            };
1017            move |versioned_tx: VersionedTransaction| -> Result<Tx> {
1018                verify(versioned_tx, verification_mode)
1019            }
1020        };
1021
1022        let cpu_verify_result =
1023            verify_transactions(entries.clone(), thread_pool, Arc::new(verify_func));
1024        let mut gpu_verify_result: EntrySigVerificationState<Tx> = {
1025            let verify_result = start_verify_transactions(
1026                entries,
1027                skip_verification,
1028                thread_pool,
1029                verify_recyclers,
1030                verify,
1031            );
1032            match verify_result {
1033                Ok(res) => res,
1034                _ => EntrySigVerificationState {
1035                    verification_status: EntryVerificationStatus::Failure,
1036                    entries: None,
1037                    device_verification_data: DeviceSigVerificationData::Cpu(),
1038                    gpu_verify_duration_us: 0,
1039                },
1040            }
1041        };
1042
1043        match cpu_verify_result {
1044            Ok(_) => {
1045                assert!(gpu_verify_result.verification_status != EntryVerificationStatus::Failure);
1046                assert!(gpu_verify_result.finish_verify());
1047                true
1048            }
1049            _ => {
1050                assert!(
1051                    gpu_verify_result.verification_status == EntryVerificationStatus::Failure
1052                        || !gpu_verify_result.finish_verify()
1053                );
1054                false
1055            }
1056        }
1057    }
1058
1059    #[test]
1060    fn test_entry_gpu_verify() {
1061        let thread_pool = thread_pool_for_tests();
1062
1063        let verify_transaction = {
1064            move |versioned_tx: VersionedTransaction,
1065                  verification_mode: TransactionVerificationMode|
1066                  -> Result<RuntimeTransaction<SanitizedTransaction>> {
1067                let sanitized_tx = {
1068                    let message_hash =
1069                        if verification_mode == TransactionVerificationMode::FullVerification {
1070                            versioned_tx.verify_and_hash_message()?
1071                        } else {
1072                            versioned_tx.message.hash()
1073                        };
1074
1075                    RuntimeTransaction::try_create(
1076                        versioned_tx,
1077                        MessageHash::Precomputed(message_hash),
1078                        None,
1079                        SimpleAddressLoader::Disabled,
1080                        &ReservedAccountKeys::empty_key_set(),
1081                    )
1082                }?;
1083
1084                Ok(sanitized_tx)
1085            }
1086        };
1087
1088        let recycler = VerifyRecyclers::default();
1089
1090        // Make sure we test with a number of transactions that's not a multiple of PACKETS_PER_BATCH
1091        let entries_invalid = (0..1025)
1092            .map(|_| {
1093                let transaction = test_invalid_tx();
1094                next_entry_mut(&mut Hash::default(), 0, vec![transaction])
1095            })
1096            .collect::<Vec<_>>();
1097
1098        let entries_valid = (0..1025)
1099            .map(|_| {
1100                let transaction = test_tx();
1101                next_entry_mut(&mut Hash::default(), 0, vec![transaction])
1102            })
1103            .collect::<Vec<_>>();
1104
1105        assert!(!test_verify_transactions(
1106            entries_invalid,
1107            false,
1108            recycler.clone(),
1109            &thread_pool,
1110            Arc::new(verify_transaction)
1111        ));
1112        assert!(test_verify_transactions(
1113            entries_valid,
1114            false,
1115            recycler,
1116            &thread_pool,
1117            Arc::new(verify_transaction)
1118        ));
1119    }
1120
1121    #[test]
1122    fn test_transaction_reorder_attack() {
1123        let zero = Hash::default();
1124
1125        // First, verify entries
1126        let keypair = Keypair::new();
1127        let tx0 = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
1128        let tx1 = system_transaction::transfer(&keypair, &keypair.pubkey(), 1, zero);
1129        let mut e0 = Entry::new(&zero, 0, vec![tx0.clone(), tx1.clone()]);
1130        assert!(e0.verify(&zero));
1131
1132        // Next, swap two transactions and ensure verification fails.
1133        e0.transactions[0] = tx1.into(); // <-- attack
1134        e0.transactions[1] = tx0.into();
1135        assert!(!e0.verify(&zero));
1136    }
1137
1138    #[test]
1139    fn test_transaction_signing() {
1140        let thread_pool = thread_pool_for_tests();
1141
1142        use solana_signature::Signature;
1143        let zero = Hash::default();
1144
1145        let keypair = Keypair::new();
1146        let tx0 = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
1147        let tx1 = system_transaction::transfer(&keypair, &keypair.pubkey(), 1, zero);
1148
1149        // Verify entry with 2 transactions
1150        let mut e0 = [Entry::new(&zero, 0, vec![tx0, tx1])];
1151        assert!(e0.verify(&zero, &thread_pool));
1152
1153        // Clear signature of the first transaction, see that it does not verify
1154        let orig_sig = e0[0].transactions[0].signatures[0];
1155        e0[0].transactions[0].signatures[0] = Signature::default();
1156        assert!(!e0.verify(&zero, &thread_pool));
1157
1158        // restore original signature
1159        e0[0].transactions[0].signatures[0] = orig_sig;
1160        assert!(e0.verify(&zero, &thread_pool));
1161
1162        // Resize signatures and see verification fails.
1163        let len = e0[0].transactions[0].signatures.len();
1164        e0[0].transactions[0]
1165            .signatures
1166            .resize(len - 1, Signature::default());
1167        assert!(!e0.verify(&zero, &thread_pool));
1168
1169        // Pass an entry with no transactions
1170        let e0 = [Entry::new(&zero, 0, vec![])];
1171        assert!(e0.verify(&zero, &thread_pool));
1172    }
1173
1174    #[test]
1175    fn test_next_entry() {
1176        let zero = Hash::default();
1177        let tick = next_entry(&zero, 1, vec![]);
1178        assert_eq!(tick.num_hashes, 1);
1179        assert_ne!(tick.hash, zero);
1180
1181        let tick = next_entry(&zero, 0, vec![]);
1182        assert_eq!(tick.num_hashes, 0);
1183        assert_eq!(tick.hash, zero);
1184
1185        let keypair = Keypair::new();
1186        let tx0 = system_transaction::transfer(&keypair, &Pubkey::new_unique(), 42, zero);
1187        let entry0 = next_entry(&zero, 1, vec![tx0.clone()]);
1188        assert_eq!(entry0.num_hashes, 1);
1189        assert_eq!(entry0.hash, next_hash(&zero, 1, &[tx0.into()]));
1190    }
1191
1192    #[test]
1193    #[should_panic]
1194    fn test_next_entry_panic() {
1195        let zero = Hash::default();
1196        let keypair = Keypair::new();
1197        let tx = system_transaction::transfer(&keypair, &keypair.pubkey(), 0, zero);
1198        next_entry(&zero, 0, vec![tx]);
1199    }
1200
1201    #[test]
1202    fn test_verify_slice1() {
1203        solana_logger::setup();
1204        let thread_pool = thread_pool_for_tests();
1205
1206        let zero = Hash::default();
1207        let one = hash(zero.as_ref());
1208        // base case
1209        assert!(vec![][..].verify(&zero, &thread_pool));
1210        // singleton case 1
1211        assert!(vec![Entry::new_tick(0, &zero)][..].verify(&zero, &thread_pool));
1212        // singleton case 2, bad
1213        assert!(!vec![Entry::new_tick(0, &zero)][..].verify(&one, &thread_pool));
1214        // inductive step
1215        assert!(vec![next_entry(&zero, 0, vec![]); 2][..].verify(&zero, &thread_pool));
1216
1217        let mut bad_ticks = vec![next_entry(&zero, 0, vec![]); 2];
1218        bad_ticks[1].hash = one;
1219        // inductive step, bad
1220        assert!(!bad_ticks.verify(&zero, &thread_pool));
1221    }
1222
1223    #[test]
1224    fn test_verify_slice_with_hashes1() {
1225        solana_logger::setup();
1226        let thread_pool = thread_pool_for_tests();
1227
1228        let zero = Hash::default();
1229        let one = hash(zero.as_ref());
1230        let two = hash(one.as_ref());
1231        // base case
1232        assert!(vec![][..].verify(&one, &thread_pool));
1233        // singleton case 1
1234        assert!(vec![Entry::new_tick(1, &two)][..].verify(&one, &thread_pool));
1235        // singleton case 2, bad
1236        assert!(!vec![Entry::new_tick(1, &two)][..].verify(&two, &thread_pool));
1237
1238        let mut ticks = vec![next_entry(&one, 1, vec![])];
1239        ticks.push(next_entry(&ticks.last().unwrap().hash, 1, vec![]));
1240        // inductive step
1241        assert!(ticks.verify(&one, &thread_pool));
1242
1243        let mut bad_ticks = vec![next_entry(&one, 1, vec![])];
1244        bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![]));
1245        bad_ticks[1].hash = one;
1246        // inductive step, bad
1247        assert!(!bad_ticks.verify(&one, &thread_pool));
1248    }
1249
1250    #[test]
1251    fn test_verify_slice_with_hashes_and_transactions() {
1252        solana_logger::setup();
1253        let thread_pool = thread_pool_for_tests();
1254
1255        let zero = Hash::default();
1256        let one = hash(zero.as_ref());
1257        let two = hash(one.as_ref());
1258        let alice_keypair = Keypair::new();
1259        let bob_keypair = Keypair::new();
1260        let tx0 = system_transaction::transfer(&alice_keypair, &bob_keypair.pubkey(), 1, one);
1261        let tx1 = system_transaction::transfer(&bob_keypair, &alice_keypair.pubkey(), 1, one);
1262        // base case
1263        assert!(vec![][..].verify(&one, &thread_pool));
1264        // singleton case 1
1265        assert!(vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&one, &thread_pool));
1266        // singleton case 2, bad
1267        assert!(!vec![next_entry(&one, 1, vec![tx0.clone()])][..].verify(&two, &thread_pool));
1268
1269        let mut ticks = vec![next_entry(&one, 1, vec![tx0.clone()])];
1270        ticks.push(next_entry(
1271            &ticks.last().unwrap().hash,
1272            1,
1273            vec![tx1.clone()],
1274        ));
1275
1276        // inductive step
1277        assert!(ticks.verify(&one, &thread_pool));
1278
1279        let mut bad_ticks = vec![next_entry(&one, 1, vec![tx0])];
1280        bad_ticks.push(next_entry(&bad_ticks.last().unwrap().hash, 1, vec![tx1]));
1281        bad_ticks[1].hash = one;
1282        // inductive step, bad
1283        assert!(!bad_ticks.verify(&one, &thread_pool));
1284    }
1285
1286    #[test]
1287    fn test_verify_tick_hash_count() {
1288        let hashes_per_tick = 10;
1289        let tx = VersionedTransaction::default();
1290
1291        let no_hash_tx_entry = Entry {
1292            transactions: vec![tx.clone()],
1293            ..Entry::default()
1294        };
1295        let single_hash_tx_entry = Entry {
1296            transactions: vec![tx.clone()],
1297            num_hashes: 1,
1298            ..Entry::default()
1299        };
1300        let partial_tx_entry = Entry {
1301            num_hashes: hashes_per_tick - 1,
1302            transactions: vec![tx.clone()],
1303            ..Entry::default()
1304        };
1305        let full_tx_entry = Entry {
1306            num_hashes: hashes_per_tick,
1307            transactions: vec![tx.clone()],
1308            ..Entry::default()
1309        };
1310        let max_hash_tx_entry = Entry {
1311            transactions: vec![tx],
1312            num_hashes: u64::MAX,
1313            ..Entry::default()
1314        };
1315
1316        let no_hash_tick_entry = Entry::new_tick(0, &Hash::default());
1317        let single_hash_tick_entry = Entry::new_tick(1, &Hash::default());
1318        let partial_tick_entry = Entry::new_tick(hashes_per_tick - 1, &Hash::default());
1319        let full_tick_entry = Entry::new_tick(hashes_per_tick, &Hash::default());
1320        let max_hash_tick_entry = Entry::new_tick(u64::MAX, &Hash::default());
1321
1322        // empty batch should succeed if hashes_per_tick hasn't been reached
1323        let mut tick_hash_count = 0;
1324        let mut entries = vec![];
1325        assert!(entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1326        assert_eq!(tick_hash_count, 0);
1327
1328        // empty batch should fail if hashes_per_tick has been reached
1329        tick_hash_count = hashes_per_tick;
1330        assert!(!entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1331        assert_eq!(tick_hash_count, hashes_per_tick);
1332        tick_hash_count = 0;
1333
1334        // validation is disabled when hashes_per_tick == 0
1335        entries = vec![max_hash_tx_entry.clone()];
1336        assert!(entries.verify_tick_hash_count(&mut tick_hash_count, 0));
1337        assert_eq!(tick_hash_count, 0);
1338
1339        // partial tick should fail
1340        entries = vec![partial_tick_entry.clone()];
1341        assert!(!entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1342        assert_eq!(tick_hash_count, hashes_per_tick - 1);
1343        tick_hash_count = 0;
1344
1345        // full tick entry should succeed
1346        entries = vec![no_hash_tx_entry, full_tick_entry.clone()];
1347        assert!(entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1348        assert_eq!(tick_hash_count, 0);
1349
1350        // oversized tick entry should fail
1351        assert!(!entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick - 1));
1352        assert_eq!(tick_hash_count, hashes_per_tick);
1353        tick_hash_count = 0;
1354
1355        // partial tx entry without tick entry should succeed
1356        entries = vec![partial_tx_entry];
1357        assert!(entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1358        assert_eq!(tick_hash_count, hashes_per_tick - 1);
1359        tick_hash_count = 0;
1360
1361        // full tx entry with tick entry should succeed
1362        entries = vec![full_tx_entry.clone(), no_hash_tick_entry];
1363        assert!(entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1364        assert_eq!(tick_hash_count, 0);
1365
1366        // full tx entry with oversized tick entry should fail
1367        entries = vec![full_tx_entry.clone(), single_hash_tick_entry.clone()];
1368        assert!(!entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1369        assert_eq!(tick_hash_count, hashes_per_tick + 1);
1370        tick_hash_count = 0;
1371
1372        // full tx entry without tick entry should fail
1373        entries = vec![full_tx_entry];
1374        assert!(!entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1375        assert_eq!(tick_hash_count, hashes_per_tick);
1376        tick_hash_count = 0;
1377
1378        // tx entry and a tick should succeed
1379        entries = vec![single_hash_tx_entry.clone(), partial_tick_entry];
1380        assert!(entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1381        assert_eq!(tick_hash_count, 0);
1382
1383        // many tx entries and a tick should succeed
1384        let tx_entries: Vec<Entry> = (0..hashes_per_tick - 1)
1385            .map(|_| single_hash_tx_entry.clone())
1386            .collect();
1387        entries = [tx_entries, vec![single_hash_tick_entry]].concat();
1388        assert!(entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1389        assert_eq!(tick_hash_count, 0);
1390
1391        // check overflow saturation should fail
1392        entries = vec![full_tick_entry.clone(), max_hash_tick_entry];
1393        assert!(!entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1394        assert_eq!(tick_hash_count, u64::MAX);
1395        tick_hash_count = 0;
1396
1397        // check overflow saturation should fail
1398        entries = vec![max_hash_tx_entry, full_tick_entry];
1399        assert!(!entries.verify_tick_hash_count(&mut tick_hash_count, hashes_per_tick));
1400        assert_eq!(tick_hash_count, u64::MAX);
1401    }
1402
1403    #[test]
1404    fn test_poh_verify_fuzz() {
1405        solana_logger::setup();
1406        for _ in 0..100 {
1407            let mut time = Measure::start("ticks");
1408            let num_ticks = thread_rng().gen_range(1..100);
1409            info!("create {} ticks:", num_ticks);
1410            let mut entries = create_random_ticks(num_ticks, 100, Hash::default());
1411            time.stop();
1412
1413            let mut modified = false;
1414            if thread_rng().gen_ratio(1, 2) {
1415                modified = true;
1416                let modify_idx = thread_rng().gen_range(0..num_ticks) as usize;
1417                entries[modify_idx].hash = hash(&[1, 2, 3]);
1418            }
1419
1420            info!("done.. {}", time);
1421            let mut time = Measure::start("poh");
1422            let res = entries.verify(&Hash::default(), &thread_pool_for_tests());
1423            assert_eq!(res, !modified);
1424            time.stop();
1425            info!("{} {}", time, res);
1426        }
1427    }
1428
1429    #[test]
1430    fn test_hash_transactions() {
1431        let mut transactions: Vec<_> = [test_tx(), test_tx(), test_tx()]
1432            .into_iter()
1433            .map(VersionedTransaction::from)
1434            .collect();
1435
1436        // Test different permutations of the transactions have different final hashes.
1437        // i.e. that **order** of transactions is included in the hash.
1438        let hash1 = hash_transactions(&transactions);
1439        transactions.swap(0, 1);
1440        let hash2 = hash_transactions(&transactions);
1441        assert_ne!(hash1, hash2);
1442    }
1443}