1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
//! Provides an iterator interface that create non-conflicting batches of elements to process.
//!
//! The problem that this structure is targetting is as following:
//! We have a slice of transactions we want to process in batches where transactions
//! in the same batch do not conflict with each other. This allows us process them in
//! parallel. The original slice is ordered by priority, and it is often the case
//! that transactions with high-priority are conflicting with each other. This means
//! we cannot simply grab chunks of transactions.
//! The solution is to create a MultiIteratorScanner that will use multiple iterators, up
//! to the desired batch size, and create batches of transactions that do not conflict with
//! each other. The MultiIteratorScanner stores state for the current positions of each iterator,
//! as well as which transactions have already been handled. If a transaction is invalid it can
//! also be skipped without being considered for future batches.
//!
/// Output from the element checker used in `MultiIteratorScanner::iterate`.
#[derive(Debug)]
pub enum ProcessingDecision {
/// Should be processed by the scanner.
Now,
/// Should be skipped by the scanner on this pass - process later.
Later,
/// Should be skipped and marked as handled so we don't try processing it again.
Never,
}
/// Iterates over a slice creating valid non-self-conflicting batches of elements to process,
/// elements between batches are not guaranteed to be non-conflicting.
/// Conflicting elements are guaranteed to be processed in the order they appear in the slice,
/// as long as the `should_process` function is appropriately marking resources as used.
/// It is also guaranteed that elements within the batch are in the order they appear in
/// the slice. The batch size is not guaranteed to be `max_iterators` - it can be smaller.
///
/// # Example:
///
/// Assume transactions with same letter conflict with each other. A typical priority ordered
/// buffer might look like:
///
/// ```text
/// [A, A, B, A, C, D, B, C, D]
/// ```
///
/// If we want to have batches of size 4, the MultiIteratorScanner will proceed as follows:
///
/// ```text
/// [A, A, B, A, C, D, B, C, D]
/// ^ ^ ^ ^
///
/// [A, A, B, A, C, D, B, C, D]
/// ^ ^ ^ ^
///
/// [A, A, B, A, C, D, B, C, D]
/// ^
/// ```
///
/// The iterator will iterate with batches:
///
/// ```text
/// [[A, B, C, D], [A, B, C, D], [A]]
/// ```
///
pub struct MultiIteratorScanner<'a, T, U, F>
where
F: FnMut(&T, &mut U) -> ProcessingDecision,
{
/// Maximum number of iterators to use.
max_iterators: usize,
/// Slice that we're iterating over
slice: &'a [T],
/// Payload - used to store shared mutable state between scanner and the processing function.
payload: U,
/// Function that checks if an element should be processed. This function is also responsible
/// for marking resources, such as locks, as used.
should_process: F,
/// Store whether an element has already been handled
already_handled: Vec<bool>,
/// Current indices inside `slice` for multiple iterators
current_positions: Vec<usize>,
/// Container to store items for iteration - Should only be used in `get_current_items()`
current_items: Vec<&'a T>,
/// Initialized
initialized: bool,
}
pub struct PayloadAndAlreadyHandled<U> {
pub payload: U,
pub already_handled: Vec<bool>,
}
impl<'a, T, U, F> MultiIteratorScanner<'a, T, U, F>
where
F: FnMut(&T, &mut U) -> ProcessingDecision,
{
pub fn new(slice: &'a [T], max_iterators: usize, payload: U, should_process: F) -> Self {
assert!(max_iterators > 0);
Self {
max_iterators,
slice,
payload,
should_process,
already_handled: vec![false; slice.len()],
current_positions: Vec::with_capacity(max_iterators),
current_items: Vec::with_capacity(max_iterators),
initialized: false,
}
}
/// Returns a slice of the item references at the current positions of the iterators
/// and a mutable reference to the payload.
///
/// Returns None if the scanner is done iterating.
pub fn iterate(&mut self) -> Option<(&[&'a T], &mut U)> {
if !self.initialized {
self.initialized = true;
self.initialize_current_positions();
} else {
self.advance_current_positions();
}
self.get_current_items()
}
/// Consume the iterator. Return the payload, and a vector of booleans
/// indicating which items have been handled.
pub fn finalize(self) -> PayloadAndAlreadyHandled<U> {
PayloadAndAlreadyHandled {
payload: self.payload,
already_handled: self.already_handled,
}
}
/// Initialize the `current_positions` vector for the first batch.
fn initialize_current_positions(&mut self) {
let mut last_index = 0;
for _iterator_index in 0..self.max_iterators {
match self.march_iterator(last_index) {
Some(index) => {
self.current_positions.push(index);
last_index = index.saturating_add(1);
}
None => break,
}
}
}
/// March iterators forward to find the next batch of items.
fn advance_current_positions(&mut self) {
if let Some(mut prev_index) = self.current_positions.first().copied() {
for iterator_index in 0..self.current_positions.len() {
// If the previous iterator has passed this iterator, we should start
// at it's position + 1 to avoid duplicate re-traversal.
let start_index = (self.current_positions[iterator_index].saturating_add(1))
.max(prev_index.saturating_add(1));
match self.march_iterator(start_index) {
Some(index) => {
self.current_positions[iterator_index] = index;
prev_index = index;
}
None => {
// Drop current positions that go past the end of the slice
self.current_positions.truncate(iterator_index);
break;
}
}
}
}
}
/// Get the current items from the slice using `self.current_positions`.
/// Returns `None` if there are no more items.
fn get_current_items(&mut self) -> Option<(&[&'a T], &mut U)> {
self.current_items.clear();
for index in &self.current_positions {
self.current_items.push(&self.slice[*index]);
}
(!self.current_items.is_empty()).then_some((&self.current_items, &mut self.payload))
}
/// Moves the iterator to its' next position. If we've reached the end of the slice, we return None
fn march_iterator(&mut self, starting_index: usize) -> Option<usize> {
let mut found = None;
for index in starting_index..self.slice.len() {
if !self.already_handled[index] {
match (self.should_process)(&self.slice[index], &mut self.payload) {
ProcessingDecision::Now => {
self.already_handled[index] = true;
found = Some(index);
break;
}
ProcessingDecision::Later => {
// Do nothing - iterator will try this element in a future batch
}
ProcessingDecision::Never => {
self.already_handled[index] = true;
}
}
}
}
found
}
}
#[cfg(test)]
mod tests {
use super::*;
struct TestScannerPayload {
locks: Vec<bool>,
}
fn test_scanner_locking_should_process(
item: &i32,
payload: &mut TestScannerPayload,
) -> ProcessingDecision {
if payload.locks[*item as usize] {
ProcessingDecision::Later
} else {
payload.locks[*item as usize] = true;
ProcessingDecision::Now
}
}
#[test]
fn test_multi_iterator_scanner_empty() {
let slice: Vec<i32> = vec![];
let mut scanner = MultiIteratorScanner::new(&slice, 2, (), |_, _| ProcessingDecision::Now);
assert!(scanner.iterate().is_none());
}
#[test]
fn test_multi_iterator_scanner_iterate() {
let slice = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
let should_process = |_item: &i32, _payload: &mut ()| ProcessingDecision::Now;
let mut scanner = MultiIteratorScanner::new(&slice, 2, (), should_process);
let mut actual_batches = vec![];
while let Some((batch, _payload)) = scanner.iterate() {
actual_batches.push(batch.to_vec());
}
// Batch 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
// ^ ^
// Batch 2: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
// ^ ^
// Batch 3: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
// ^ ^
// Batch 4: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
// ^ ^
// Batch 5: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
// ^ ^
// Batch 6: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
// ^
let expected_batches = vec![
vec![&1, &2],
vec![&3, &4],
vec![&5, &6],
vec![&7, &8],
vec![&9, &10],
vec![&11],
];
assert_eq!(actual_batches, expected_batches);
}
#[test]
fn test_multi_iterator_scanner_iterate_with_gaps() {
let slice = [0, 0, 0, 1, 2, 3, 1];
let payload = TestScannerPayload {
locks: vec![false; 4],
};
let mut scanner =
MultiIteratorScanner::new(&slice, 2, payload, test_scanner_locking_should_process);
let mut actual_batches = vec![];
while let Some((batch, payload)) = scanner.iterate() {
// free the resources
for item in batch {
payload.locks[**item as usize] = false;
}
actual_batches.push(batch.to_vec());
}
// Batch 1: [0, 0, 0, 1, 2, 3, 4]
// ^ ^
// Batch 2: [0, 0, 0, 1, 2, 3, 4]
// ^ ^
// Batch 3: [0, 0, 0, 1, 2, 3, 4]
// ^ ^
// Batch 4: [0, 0, 0, 1, 2, 3, 4]
// -----------^ (--- indicates where the 0th iterator marched from)
let expected_batches = vec![vec![&0, &1], vec![&0, &2], vec![&0, &3], vec![&1]];
assert_eq!(actual_batches, expected_batches);
let PayloadAndAlreadyHandled {
payload: TestScannerPayload { locks },
already_handled,
} = scanner.finalize();
assert_eq!(locks, vec![false; 4]);
assert!(already_handled.into_iter().all(|x| x));
}
#[test]
fn test_multi_iterator_scanner_iterate_conflicts_not_at_front() {
let slice = [1, 2, 3, 0, 0, 0, 3, 2, 1];
let payload = TestScannerPayload {
locks: vec![false; 4],
};
let mut scanner =
MultiIteratorScanner::new(&slice, 2, payload, test_scanner_locking_should_process);
let mut actual_batches = vec![];
while let Some((batch, payload)) = scanner.iterate() {
// free the resources
for item in batch {
payload.locks[**item as usize] = false;
}
actual_batches.push(batch.to_vec());
}
// Batch 1: [1, 2, 3, 0, 0, 0, 3, 2, 1]
// ^ ^
// Batch 2: [1, 2, 3, 0, 0, 0, 3, 2, 1]
// ^ ^
// Batch 3: [1, 2, 3, 0, 0, 0, 3, 2, 1]
// ^ ^
// Batch 4: [1, 2, 3, 0, 0, 0, 3, 2, 1]
// ^ ^
// Batch 5: [1, 2, 3, 0, 0, 0, 3, 2, 1]
// ^
let expected_batches = vec![
vec![&1, &2],
vec![&3, &0],
vec![&0, &3],
vec![&0, &2],
vec![&1],
];
assert_eq!(actual_batches, expected_batches);
let PayloadAndAlreadyHandled {
payload: TestScannerPayload { locks },
already_handled,
} = scanner.finalize();
assert_eq!(locks, vec![false; 4]);
assert!(already_handled.into_iter().all(|x| x));
}
#[test]
fn test_multi_iterator_scanner_iterate_with_never_process() {
let slice = [0, 4, 1, 2];
let should_process = |item: &i32, _payload: &mut ()| match item {
4 => ProcessingDecision::Never,
_ => ProcessingDecision::Now,
};
let mut scanner = MultiIteratorScanner::new(&slice, 2, (), should_process);
let mut actual_batches = vec![];
while let Some((batch, _payload)) = scanner.iterate() {
actual_batches.push(batch.to_vec());
}
// Batch 1: [0, 4, 1, 2]
// ^ ^
// Batch 2: [0, 4, 1, 2]
// ^
let expected_batches = vec![vec![&0, &1], vec![&2]];
assert_eq!(actual_batches, expected_batches);
}
#[test]
fn test_multi_iterator_scanner_iterate_not_handled() {
let slice = [0, 1, 2];
// 0 and 2 will always be marked as later, and never actually handled
let should_process = |item: &i32, _payload: &mut ()| match item {
1 => ProcessingDecision::Now,
_ => ProcessingDecision::Later,
};
let mut scanner = MultiIteratorScanner::new(&slice, 2, (), should_process);
let mut actual_batches = vec![];
while let Some((batch, _payload)) = scanner.iterate() {
actual_batches.push(batch.to_vec());
}
// Batch 1: [1]
let expected_batches = vec![vec![&1]];
assert_eq!(actual_batches, expected_batches);
let PayloadAndAlreadyHandled {
already_handled, ..
} = scanner.finalize();
assert_eq!(already_handled, vec![false, true, false]);
}
}