1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
//! # Soft Edge: efficient bithackery for making 3D collision meshes out of grids and stacked tile maps
//!
//! *indecipherable wailing guitar noises and tape echo sounds* - Wata (Boris - Soft Edge)
//!
//! `soft-edge` is a crate which provides utilities for dealing with 3D grids where the cells are
//! colliders defined as convex hulls of subsets of the unit cube.
//!
//! Things it gives you:
//! - [`Vertex`], representing a vertex of the unit cube as an index in `0..8`
//! - [`VertexSet`], representing a subset of the vertices of the unit cube as a 1-byte bitset
//! - [`Atom`], representing a valid convex non-coplanar subset of the vertices of the unit cube
//! - [`CompoundHull`], representing a clippable convex hull of an `Atom`
//! - [`HullFacet`], representing a polygon of a potentially clipped compound hull of an atom.
//! Facets calculated from a [`CompoundHull`] will *always* be in CCW winding order.
//!
//! # Why?
//!
//! If you've ever tried building a game physics system with a tile-based map before, you've
//! probably run into the "crack problem". This is where if you have two adjacent tiles, things
//! which should smoothly move over the "crack" between them (which mathematically does not exist
//! because the vertices of these two tiles are shared) instead get caught on the crack, because
//! during collision detection the object is moved into a tile by some force and ends up spuriously
//! colliding with an unexposed edge of one tile.
//!
//! `soft-edge`'s [`CompoundHull`] type represents a sort of encoded tile collider with a
//! `join_exteriors` method that erases any of these unexposed edges between two tiles, leaving you
//! with the surface polygons that can't cause the crack problem. In addition, these clipping
//! operations are extremely fast, requiring only three bitwise operations (maybe some more because
//! they're done on only a subset of the bits of a thing, but still, it's fast.)
//!
//! # Does it work?
//!
//! Uh, I think so. All the tests pass, at least?
//!
//! Many things in this crate are specialized/brute forced/handwritten as lookup tables. I've fixed
//! all the bugs I could find, but I'm sure there are more hiding somewhere, probably in mistakes in
//! bit-significance or something. Though most bitwise ops are done through the `bitvec` crate
//! exactly to avoid this as much as possible.
//!
//! # Vertex numbering
//!
//! Vertices are numbered as follows:
//!
//! ```text
//! v3 v7
//! *----*
//! v2 /| v6/|
//! *----* | +Y
//! | *--|-* ^ ^ +Z
//! |/v1 |/v5 |/
//! *----* +--> +X
//! v0 v4
//! ```
//!
//! For more convenience, a conversion between vertex index and unit cube coordinates:
//!
//! ```text
//! // v0 is the origin.
//! v0 <=> {0, 0, 0} <=> 0b000
//! v1 <=> {0, 0, 1} <=> 0b001
//! v2 <=> {0, 1, 0} <=> 0b010
//! v3 <=> {0, 1, 1} <=> 0b011
//! v4 <=> {1, 0, 0} <=> 0b100
//! v5 <=> {1, 0, 1} <=> 0b101
//! v6 <=> {1, 1, 0} <=> 0b110
//! v7 <=> {1, 1, 1} <=> 0b111
//! ```
//!
//! This is derived as a bitwise representation `0bXYZ` where the X bit represents whether or not
//! the X axis is `1`, Y bit is whether or not the Y axis is `1`, etc.
//!
//! # "Exact" coordinates for vertex index deduplication
//!
//! In order to facilitate vertex deduplication (for an indexed triangle mesh, for example) most of
//! the output coordinates for things like the [`CompoundHull`]'s facets ([`HullFacet`]) are
//! presented using the [`Exact`] type. This wraps nalgebra's [`Point3<i32>`], and is essentially
//! just the same coordinates you would expect but scaled by a factor of 2 on every axis. This
//! allows us to represent centroids of faces with no possibility of error, and also provides a
//! hashable type which can be used to build a set mapping vertices to indices.
//!
//! # Generally speaking, how do you expect me to use this?
//!
//! 1. Encode your collision map as a grid of bytes, which correspond to valid [`Atom`]s.
//! Deserialize these bytes into [`VertexSet`]s using [`VertexSet::from_u8`], and try to
//! construct atoms from them with [`Atom::try_new`].
//! 2. Construct a three-dimensional grid consisting of the [`CompoundHull`]s of the atom grid
//! elements, and then for every hull in the grid, `join` it with its neighbors on the proper
//! axes.
//! 3. Extract facets of these joined compound hulls as [`HullFacet`]s, and then construct your
//! collision geometry with them. This will end up as a very much non-convex mesh, which you may
//! want to decompose into convex sub-meshes (but don't have to, if you do collisions directly on
//! polygons and only allow contact normals which penetrate through their "surface" side.)
//!
//! Step 3 has some caveats. `soft-edge` attempts to produce hull facets with the correct winding
//! order, which should allow you to easily calculate their normals. If it does not, this is a bug,
//! and must be fixed. The caveat here is that `soft-edge` does not yet have a full test suite.
//!
#![warn(missing_docs, missing_debug_implementations)]
use arrayvec::ArrayVec;
use bitvec::prelude::*;
use std::fmt;
use std::ops::{
BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not, Sub, SubAssign,
};
use nalgebra::*;
mod hull;
pub use bitvec;
pub use hull::*;
/// The eight possible points of a [`Vertex`], in "exact coordinates" (see [`Exact`].)
///
/// [`Vertex::to_exact`] is implemented as a lookup in this array,
pub const POINTS: [Exact; 8] = [
Exact(point!(0, 0, 0)),
Exact(point!(0, 0, 2)),
Exact(point!(0, 2, 0)),
Exact(point!(0, 2, 2)),
Exact(point!(2, 0, 0)),
Exact(point!(2, 0, 2)),
Exact(point!(2, 2, 0)),
Exact(point!(2, 2, 2)),
];
/// A plane, represented as a point on the plane and a normal vector (not necessarily guaranteed to
/// be normalized).
#[derive(Debug, Clone, Copy)]
pub struct Plane {
/// A point on the plane.
pub p0: Point3<f32>,
/// A vector normal to the plane.
pub n: Vector3<f32>,
}
impl Plane {
/// Returns `true` if this point is on the same side as its normal ("above" the plane).
pub fn is_point_above(&self, p1: &Point3<f32>) -> bool {
(p1 - self.p0).dot(&self.n) > 0.
}
/// Returns `true` if this point is on the opposite side as its normal ("below" the plane).
pub fn is_point_below(&self, p1: &Point3<f32>) -> bool {
(p1 - self.p0).dot(&self.n) < 0.
}
}
/// A vertex of a cube, represented as a byte index encoded w/ three bits, each representing an axis
/// as a boolean (true = 1, false = 0.) See the constants [`X_AXIS`], [`Y_AXIS`], [`Z_AXIS`] for a
/// reference of which bits are which.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Vertex {
index: u8,
}
impl Vertex {
/// Cubes have 8 vertices.
#[inline]
pub fn is_valid(self) -> bool {
self.index < 8
}
/// Convert this vertex to the corresponding point on the unit cube in "exact" coordinates.
#[inline]
pub fn to_exact(self) -> Exact {
POINTS[self.index as usize]
}
/// Convert this vertex to the corresponding point on the unit cube, represented using `f32`
/// coordinates.
pub fn to_f32(self) -> Point3<f32> {
self.to_exact().0.cast() / 2.
}
/// Convert this vertex to a `u8` in the range [0, 8].
#[inline]
pub fn to_u8(self) -> u8 {
self.index
}
/// Convert a raw bit representation (`u8` in the range [0, 8]) into a `Vertex`. Panics if the
/// index is invalid (`>= 8`.)
#[inline]
pub fn from_u8(byte: u8) -> Self {
let this = Self { index: byte };
assert!(this.is_valid(), "invalid vertex");
this
}
/// Construct an iterator which returns all eight possible vertices.
#[inline]
pub fn generator() -> impl Iterator<Item = Self> {
(0..8u8).map(|bits| Self { index: bits })
}
/// Convert this vertex to the vertex set containing only it.
#[inline]
pub fn to_set(self) -> VertexSet {
VertexSet::new() | self
}
}
/// Construct a vertex set in such a way that it can be used in a `const` expression. This macro
/// requires that the `bitarr!` macro and `Lsb0` type from the `bitvec` crate are in scope, for
/// technical reasons related to the limitations of bitvec's `bitarr` macro itself.
#[macro_export]
macro_rules! const_vertex_set {
($($val:expr),*) => {
VertexSet {
bits: bitarr![const Lsb0, u8; $($val),*],
}
}
}
/// Construct a vertex set.
///
/// # Example
///
/// ```
/// # use soft_edge::*;
/// // Construct a vertex set representing a tetrahedron, made with the four vertices of
/// // index 1, 4, 5, and 7.
/// let tetrahedron_set = vertex_set![0, 1, 0, 0, 1, 1, 0, 1];
/// let hull = Atom::new(tetrahedron_set).compound_hull();
/// // A tetrahedron built like this will have one interior face (conceptually, from
/// // slicing off one corner of the cube) and three exterior faces (all triangles,
/// // leftover sides from the slicing operation which used to be squares.)
/// assert_eq!(hull.interior().facets().count(), 1);
/// assert_eq!(hull.exterior().facets().count(), 3,);
/// ```
#[macro_export]
macro_rules! vertex_set {
($($val:expr),*) => {
VertexSet {
bits: $crate::bitvec::bitarr![$crate::bitvec::order::Lsb0, u8; $($val),*],
}
}
}
/// The six faces of the unit cube, each corresponding to an axis.
///
/// This array is arranged such that given some [`Axis`] `axis`, `FACES[axis.to_index()]` will
/// return the appropriate vertex set representing the face in the direction of that axis.
pub const FACES: [VertexSet; 6] = {
[
// +X
const_vertex_set![0, 0, 0, 0, 1, 1, 1, 1],
// +Y
const_vertex_set![0, 0, 1, 1, 0, 0, 1, 1],
// +Z
const_vertex_set![0, 1, 0, 1, 0, 1, 0, 1],
// -X
const_vertex_set![1, 1, 1, 1, 0, 0, 0, 0],
// -Y
const_vertex_set![1, 1, 0, 0, 1, 1, 0, 0],
// -Z
const_vertex_set![1, 0, 1, 0, 1, 0, 1, 0],
]
};
/// Six quadrilaterals which happen to match planes of symmetry of the cube. These are the planes
/// which exist between pairs of edges of the cube, and represent six possible ways we might end up
/// with a quad as an interior face of an atom, plus a total of 24 possible ways we could end up
/// with triangles as interior faces of an atom (by cutting those quads in half, four ways each.)
pub const SYMMETRIES: [VertexSet; 6] = [
// Symmetry planes
// 0, 1, 6, 7
const_vertex_set![1, 1, 0, 0, 0, 0, 1, 1],
// 2, 3, 4, 5
const_vertex_set![0, 0, 1, 1, 1, 1, 0, 0],
// 0, 3, 4, 7
const_vertex_set![1, 0, 0, 1, 1, 0, 0, 1],
// 1, 2, 5, 6
const_vertex_set![0, 1, 1, 0, 0, 1, 1, 0],
// 1, 3, 4, 6
const_vertex_set![0, 1, 0, 1, 1, 0, 1, 0],
// 0, 2, 5, 7
const_vertex_set![1, 0, 1, 0, 0, 1, 0, 1],
];
/// The eight "anomalous configurations" of subsets of the unit cube; these are triangular interior
/// faces which can be calculated as part of finding the interior convex hull of an atom, and which
/// are always triangular (within an atom, can never be joined with another triangle into a quad.)
/// Also, "anomalous configuration" sounds badass. Admit it.
pub const ANOMALOUS_CONFIGURATIONS: [VertexSet; 8] = [
// 0, 3, 5
const_vertex_set![1, 0, 0, 1, 0, 1, 0, 0],
// 0, 3, 6
const_vertex_set![1, 0, 0, 1, 0, 0, 1, 0],
// 0, 5, 6
const_vertex_set![1, 0, 0, 0, 0, 1, 1, 0],
// 1, 2, 4
const_vertex_set![0, 1, 1, 0, 1, 0, 0, 0],
// 1, 2, 7
const_vertex_set![0, 1, 1, 0, 0, 0, 0, 1],
// 1, 4, 7
const_vertex_set![0, 1, 0, 0, 1, 0, 0, 1],
// 2, 4, 7
const_vertex_set![0, 0, 1, 0, 1, 0, 0, 1],
// 3, 5, 6
const_vertex_set![0, 0, 0, 1, 0, 1, 1, 0],
];
/// Axis unit vectors in `i32` coordinates corresponding to the same index order as faces and the
/// axis `to_index()` and `u8` representation.
pub const AXIS_VECTORS: [Vector3<i32>; 6] = [
vector![1, 0, 0],
vector![0, 1, 0],
vector![0, 0, 1],
vector![-1, 0, 0],
vector![0, -1, 0],
vector![0, 0, -1],
];
/// Represents a single signed axis: `+X`, `+Y`, `+Z`, `-X`, `-Y`, or `-Z`.
///
/// These are used to enumerate the faces of the unit cube when deriving the exterior hull of an
/// atom, and are also encoded into the bit representation used by [`Face`].
///
/// Note that on the unit cube, you won't actually find any negative coordinates; the negative axes
/// are used to represent the faces *in the direction of* the negatives, and so are also sometimes
/// called "zero axes" because they represent the face where the corresponding coordinate is zero.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(u8)]
#[allow(missing_docs)]
pub enum Axis {
PosX = 0,
PosY = 1,
PosZ = 2,
NegX = 3,
NegY = 4,
NegZ = 5,
}
impl Axis {
/// Construct an axis from adjacent integer coordinates, if they are exactly adjacent.
///
/// This is useful for when you're dealing with adjacent atoms and need to find the axis between
/// them so you can join their faces along that axis, for example.
///
/// The axis returned corresponds to the vector from `p0` towards `p1`. Returns `None` if the
/// points are non-adjacent.
#[inline]
pub fn from_adjacent_coords(p0: &Point3<i32>, p1: &Point3<i32>) -> Option<Self> {
let v0 = p1 - p0;
AXIS_VECTORS
.iter()
.copied()
.position(|va| v0 == va)
.map(|i| unsafe { Self::from_u8_unchecked(i as u8) })
}
/// Convert this axis to its representative integer unit vector.
#[inline]
pub fn to_offset(self) -> Vector3<i32> {
AXIS_VECTORS[self.to_index()]
}
/// # Safety
///
/// This byte must be a valid `Axis` (one of the six byte values defined in the enum.)
#[inline]
pub unsafe fn from_u8_unchecked(byte: u8) -> Self {
std::mem::transmute(byte)
}
/// What vertices on our atom are members of the face on this axis?
#[inline]
pub fn to_face_set(self) -> VertexSet {
FACES[self as usize]
}
/// Are these two axes parallel? (+X/-X, +Y/-Y, +Z/-Z, pairs of same-sign axes are also
/// acceptible +X/+X, -Y/-Y, etc.)
#[inline]
pub fn is_parallel(self, other: Axis) -> bool {
self as u8 % 3 == other as u8 % 3
}
/// Get the same axis in the opposite direction. (+X => -X, -Z => +Z)
#[inline]
pub fn opposite(self) -> Axis {
match self {
Axis::PosX => Axis::NegX,
Axis::PosY => Axis::NegY,
Axis::PosZ => Axis::NegZ,
Axis::NegX => Axis::PosX,
Axis::NegY => Axis::PosY,
Axis::NegZ => Axis::PosZ,
}
}
/// Does this axis represent a negative/zero axis?
///
/// Returns true if `self` is `NegX`, `NegY`, or `NegZ`.
#[inline]
pub fn is_negative(self) -> bool {
match self {
Axis::PosX => false,
Axis::PosY => false,
Axis::PosZ => false,
Axis::NegX => true,
Axis::NegY => true,
Axis::NegZ => true,
}
}
/// Does this axis represent a positive/nonzero axis?
///
/// Returns true if `self` is `PosX`, `PosY`, or `PosZ`.
#[inline]
pub fn is_positive(self) -> bool {
!self.is_negative()
}
/// Get the centroid of the face on this axis.
#[inline]
pub fn to_face_center(self) -> Exact {
match self {
Axis::PosX => Exact(Point3::new(2, 1, 1)),
Axis::PosY => Exact(Point3::new(1, 2, 1)),
Axis::PosZ => Exact(Point3::new(1, 1, 2)),
Axis::NegX => Exact(Point3::new(0, 1, 1)),
Axis::NegY => Exact(Point3::new(1, 0, 1)),
Axis::NegZ => Exact(Point3::new(1, 1, 0)),
}
}
#[inline]
pub(crate) fn to_bits(self) -> BitArray<Lsb0, [u8; 1]> {
BitArray::new([self as u8])
}
/// Convenient helper for conversion to `usize`.
#[inline]
pub fn to_index(self) -> usize {
self as u8 as usize
}
/// Create an iterator over all six axes.
#[inline]
pub fn generator() -> impl Iterator<Item = Self> {
(0u8..6).map(|b| unsafe { Self::from_u8_unchecked(b) })
}
/// True if the face set for this axis requires a winding flip.
///
/// This is likely not useful to you as a user, and is used internally inside the exterior hull
/// generation algorithm. But it is still useful to document for external understanding:
///
/// # Winding order of exterior faces and face sets
///
/// As a refresher, this is our vertex numbering scheme:
///
/// ```text
/// v3 v7
/// *----*
/// v2 /| v6/|
/// *----* | +Y
/// | *--|-* ^ ^ +Z
/// |/v1 |/v5 |/
/// *----* +--> +X
/// v0 v4
/// ```
///
/// We want all face windings to be in CCW order. Due to the fact that this order produces a
/// Z-pattern on each face set - e.g. `0, 1, 2, 3`, `0, 2, 4, 6`, `1, 3, 5, 7`, when sorted -
/// the exterior facet generation code will flip the first two vertices: `1, 0, 2, 3`, `2, 0, 4,
/// 6`, etc., producing what should ideally be a CCW-wound quad.
///
/// Unfortunately this is not always the case. Note that the `NegY` axis's face set, when
/// sorted, produces `0, 1, 4, 5` for its Z-pattern, and `1, 0, 4, 5` for its wound-pattern.
/// Which, when viewed from below, is a clockwise winding, not counter-clockwise. As such,
/// unless a better descriptor of *why* stuff must be flipped, we'll need to just straight up
/// flip `NegY` to compensate.
///
/// Axes that need to be flipped:
///
/// - `NegX`
/// - `PosY`
/// - `NegZ`
///
/// Axes that do not need to be flipped:
///
/// - `PosX`
/// - `NegY`
/// - `PosZ`
///
/// It seems like the reason that we need things to be flipped differently on the Y axis is that
/// this ordering is naturally *right-handed*, and our "world" coordinate system is left-handed.
/// This is just my hypothesis though, and frankly, as is, this flipping is strictly done
/// because it makes things work.
#[inline]
pub fn requires_winding_flip(self) -> bool {
use Axis::*;
match self {
NegX | PosY | NegZ => true,
PosX | NegY | PosZ => false,
}
}
}
/// A set of vertices represented as [`Vertex`]s.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VertexSet {
/// The vertices of the set, encoded as a bitset of vertex indices.
pub bits: BitArray<Lsb0, [u8; 1]>,
}
impl fmt::Display for VertexSet {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if !f.alternate() {
write!(f, "VertexSet({:?})", self.bits)
} else {
write!(f, "VertexSet([")?;
for (i, v) in self.vertices().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
write!(f, "{}", v.to_f32())?;
}
write!(f, "])")
}
}
}
impl Default for VertexSet {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl VertexSet {
/// Create an empty vertex set.
#[inline]
pub fn new() -> Self {
Self {
bits: BitArray::zeroed(),
}
}
/// Create a vertex set from a byte, where each bit represents a set/unset vertex.
#[inline]
pub fn from_u8(byte: u8) -> Self {
Self {
bits: BitArray::new([byte]),
}
}
/// How many vertices are in this set?
///
/// Always returns a value in the range `0..8`.
#[inline]
pub fn len(self) -> usize {
self.bits.count_ones()
}
/// Does this vertex set contain a given vertex?
#[inline]
pub fn contains(self, v: Vertex) -> bool {
*self.bits.get(v.to_u8() as usize).unwrap()
}
/// Insert a single vertex into the set.
///
/// You can also use the bitwise "or" operators (`|=` or `|`.)
#[inline]
pub fn insert(&mut self, vertex: Vertex) {
self.bits.set(vertex.to_u8() as usize, true);
}
/// The complement of a face set will be its opposing face; this operation is quite useful.
#[inline]
pub fn complement(self) -> VertexSet {
Self { bits: !self.bits }
}
/// Test if `self` is a subset of `other`.
#[inline]
pub fn subset_of(self, other: VertexSet) -> bool {
(self & other) == self
}
/// Returns `true` if all vertices in this set are coplanar.
#[inline]
pub fn is_coplanar(self) -> bool {
// If we have less than four vertices, then by definition, they are always coplanar.
// Likewise, we are assured that if we have more than four vertices, we have at least a
// tetrahedron, so we have a set of vertices which are not entirely coplanar. We are only
// interested in the case where we could potentially have just a single square face of the
// cube, that is, when we have exactly four vertices.
let len = self.len();
if len != 4 {
// If we have less than four, we're always coplanar - it's a triangle or less.
return len < 4;
}
// For a set of four vertices to be coplanar, they must be in the set of faces or symmetry
// planes; we could check against all 12 of these. Alternatively, we can check to see if
// they contain any of the anomalous configurations. We run with the latter check, in the
// expectation that the vast majority of sets we test with this check will be non-coplanar
// (and will give us a chance to exit early out of less total checks anyways.)
!ANOMALOUS_CONFIGURATIONS.iter().any(|ac| ac.subset_of(self))
}
/// Does this vertex set have no set bits?
#[inline]
pub fn is_empty(self) -> bool {
self.bits.not_any()
}
/// Iterates over all vertices in the set, in order of their index.
#[inline]
pub fn vertices(&self) -> impl Iterator<Item = Vertex> + '_ {
self.bits.iter_ones().map(|i| Vertex::from_u8(i as u8))
}
/// Returns `Some` with the plane of the subset if the given subset is on the convex hull of
/// this vertex set. Panicks if the subset is degenerate or non-coplanar.
#[inline]
pub fn hull_plane(self, subset: VertexSet) -> Option<Plane> {
assert!(
subset.len() >= 3 && subset.is_coplanar() && subset.subset_of(self),
"expected a non-degenerate coplanar subset of this set"
);
// 1.) Find the plane on which this subset sits.
// 2.) Test all the points and see whether or not they sit on the same side of the subset.
let difference = self - subset;
// Plane, defined as point and normal.
let (p0, n) = {
let mut subset_vs = subset.vertices().take(3).map(Vertex::to_f32);
let p0 = subset_vs.next().unwrap();
let p1 = subset_vs.next().unwrap();
let p2 = subset_vs.next().unwrap();
let v0 = p1 - p0;
let v1 = p2 - p0;
let n = v0.cross(&v1);
(p0, n)
};
let mut difference_vs = difference.vertices().map(Vertex::to_f32);
let first = match difference_vs.next() {
// If there are no points which are not in the plane, then it's trivially on the hull
// (it *is* the hull.)
None => return Some(Plane { p0, n }),
Some(v) => v,
};
let sign = (first - p0).dot(&n) > 0.;
// If they all have the same sign against the plane, then this subset is on the convex hull.
difference_vs
.all(|p| ((p - p0).dot(&n) > 0.) == sign)
.then(|| Plane { p0, n })
}
/// Returns true if the given subset is on the convex hull of this vertex set. Panicks if the
/// subset is degenerate or non-coplanar.
#[inline]
pub fn is_on_hull(self, subset: VertexSet) -> bool {
self.hull_plane(subset).is_some()
}
/// Convert this vertex set to the representative byte.
#[inline]
pub fn to_u8(self) -> u8 {
self.bits.into_inner()[0]
}
/// Create an iterator over all 256 possible vertex sets.
#[inline]
pub fn generator() -> impl Iterator<Item = Self> {
(0..=255u8).map(Self::from_u8)
}
/// Find the centroid in `f32` coordinates.
#[inline]
pub fn centroid(self) -> Point3<f32> {
let coords = self
.vertices()
.map(Vertex::to_f32)
.map(|p| p.coords)
.sum::<Vector3<f32>>()
/ self.len() as f32;
Point3::from(coords)
}
}
impl BitOr for VertexSet {
type Output = Self;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
Self {
bits: self.bits | rhs.bits,
}
}
}
impl BitAnd for VertexSet {
type Output = Self;
#[inline]
fn bitand(self, rhs: Self) -> Self::Output {
Self {
bits: self.bits & rhs.bits,
}
}
}
impl BitXor for VertexSet {
type Output = Self;
#[inline]
fn bitxor(self, rhs: Self) -> Self::Output {
Self {
bits: self.bits ^ rhs.bits,
}
}
}
impl Not for VertexSet {
type Output = Self;
#[inline]
fn not(self) -> Self::Output {
self.complement()
}
}
impl Sub for VertexSet {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
self & !rhs
}
}
impl BitOrAssign for VertexSet {
#[inline]
fn bitor_assign(&mut self, rhs: Self) {
*self = *self | rhs;
}
}
impl BitAndAssign for VertexSet {
#[inline]
fn bitand_assign(&mut self, rhs: Self) {
*self = *self & rhs;
}
}
impl BitXorAssign for VertexSet {
#[inline]
fn bitxor_assign(&mut self, rhs: Self) {
*self = *self ^ rhs;
}
}
impl SubAssign for VertexSet {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl BitOr<Vertex> for VertexSet {
type Output = VertexSet;
#[inline]
fn bitor(mut self, rhs: Vertex) -> Self::Output {
self.insert(rhs);
self
}
}
impl BitAnd<Vertex> for VertexSet {
type Output = bool;
#[inline]
fn bitand(self, rhs: Vertex) -> Self::Output {
self.contains(rhs)
}
}
impl BitXor<Vertex> for VertexSet {
type Output = VertexSet;
#[inline]
fn bitxor(self, rhs: Vertex) -> Self::Output {
self ^ rhs.to_set()
}
}
impl FromIterator<Vertex> for VertexSet {
#[inline]
fn from_iter<T: IntoIterator<Item = Vertex>>(iter: T) -> Self {
let mut this = VertexSet::new();
for vertex in iter {
this.insert(vertex);
}
this
}
}
impl IntoIterator for VertexSet {
type IntoIter = arrayvec::IntoIter<Vertex, 8>;
type Item = Vertex;
#[inline]
fn into_iter(self) -> Self::IntoIter {
self.vertices().collect::<ArrayVec<Vertex, 8>>().into_iter()
}
}
/// The error type returned on trying to construct an atom using a degenerate vertex set.
#[derive(Debug, thiserror::Error)]
#[error("cannot construct a valid atom (four or more vertices and enclosing a nonzero volume) from vertex set: {:#}", vertices)]
pub struct DegeneracyError {
/// The vertices we tried to construct the atom with.
pub vertices: VertexSet,
}
/// An `Atom` is the smallest individual unit of our collision mesh. It is a convex polyhedron
/// represented as a subset of the vertices of a cube. For an `Atom` to be valid, it must have at
/// least four non-coplanar vertices (it must have nonzero volume.)
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Atom {
vertices: VertexSet,
}
impl fmt::Display for Atom {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if !f.alternate() {
write!(f, "Atom({:?})", self.vertices.bits)
} else {
write!(f, "Atom([")?;
for (i, v) in self.vertices.vertices().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
write!(f, "{}", v.to_f32())?;
}
write!(f, "])")
}
}
}
impl Atom {
/// Construct an atom from a vertex set. Panicks if the vertex set is coplanar/has zero volume.
#[inline]
pub fn new(vertices: VertexSet) -> Self {
Self::try_new(vertices).unwrap()
}
/// Try to construct an atom from a given vertex set.
#[inline]
pub fn try_new(vertices: VertexSet) -> Result<Self, DegeneracyError> {
if vertices.is_coplanar() {
Err(DegeneracyError { vertices })
} else {
Ok(Self { vertices })
}
}
/// Convert this atom back to its internal vertex set.
#[inline]
pub fn to_set(self) -> VertexSet {
self.vertices
}
/// Compute the compound hull of this atom (the combined interior and exterior hulls, in a
/// representation which allows for fast and easy clipping.)
#[inline]
pub fn compound_hull(self) -> CompoundHull {
CompoundHull::new(self)
}
/// Convert this atom to the byte representation of its vertex set.
#[inline]
pub fn to_u8(self) -> u8 {
self.vertices.to_u8()
}
/// Create an iterator over all possible valid atoms.
#[inline]
pub fn generator() -> impl Iterator<Item = Self> {
VertexSet::generator().filter_map(|vs| Self::try_new(vs).ok())
}
}
/// A point in "exact" cube coordinates; integer coordinates scaled by a factor of two.
///
/// This means that the unit cube in "exact" coordinates is really the cube of side length two. We
/// do this so that we can represent facets which have vertices necessarily in the center of a side.
/// This allows us to exactly represent all the vertices of a mesh of joined atoms, in a way which
/// can be conveniently hashed and exactly compared in order to deduplicate vertex indices.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Hash)]
pub struct Exact(pub Point3<i32>);
impl Exact {
/// Convert this exact vertex to a `Point3<f32>`.
pub fn to_f32(self) -> Point3<f32> {
self.0.cast::<f32>() / 2.
}
}