1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
//! Definition of schedules (sequences of points in the decision space).

use crate::utils::access;
use crate::value::Value;
use crate::{config::Config, vec_wrapper::VecWrapper};
use rayon::{
    iter::{
        FromParallelIterator, IntoParallelIterator, IntoParallelRefIterator,
    },
    slice::Iter,
    vec::IntoIter,
};
use serde_derive::{Deserialize, Serialize};
use std::{iter::FromIterator, ops::Index};

/// Includes all configurations from time $1$ to time $t_end$.
#[derive(Clone, Debug, Deserialize, Eq, Hash, PartialEq, Serialize)]
pub struct Schedule<T>(Vec<Config<T>>);
pub type IntegralSchedule = Schedule<i32>;
pub type FractionalSchedule = Schedule<f64>;

impl<'a, T> Schedule<T>
where
    T: Value<'a>,
{
    /// Converts a vector of configurations to a schedule.
    pub fn new(x: Vec<Config<T>>) -> Schedule<T> {
        Schedule(x)
    }

    /// Builds an empty schedule.
    pub fn empty() -> Schedule<T> {
        Schedule(vec![])
    }

    pub fn repeat(x: Config<T>, t: i32) -> Schedule<T> {
        Schedule(vec![x; t as usize])
    }

    /// Returns `true` if the schedule is empty (i.e. does not include any config).
    pub fn is_empty(&self) -> bool {
        self.t_end() == 0
    }

    /// Returns the time of the latest time step.
    pub fn t_end(&self) -> i32 {
        self.0.len() as i32
    }

    /// Returns the config of the latest time step.
    pub fn now(&self) -> Config<T> {
        self[self.0.len() - 1].clone()
    }

    /// Returns the config of the latest time step.
    pub fn now_with_default(&self, default: Config<T>) -> Config<T> {
        if self.is_empty() {
            default
        } else {
            self[self.0.len() - 1].clone()
        }
    }

    /// Returns the config at time $t$ if present.
    pub fn get(&self, t: i32) -> Option<&Config<T>> {
        access(&self.0, t)
    }

    /// Extends schedule with a new initial config.
    pub fn shift(&mut self, x: Config<T>) {
        self.0.insert(0, x)
    }

    /// Extends schedule with a new final config.
    pub fn push(&mut self, x: Config<T>) {
        self.0.push(x)
    }

    /// Immutably Extends schedule with a new final config.
    pub fn extend(&self, x: Config<T>) -> Schedule<T> {
        Schedule([&self.0[..], &[x]].concat())
    }

    /// Converts schedule to a vector of vectors.
    pub fn to_vec(&self) -> Vec<Vec<T>> {
        self.0.iter().map(|x| x.to_vec()).collect()
    }

    /// Builds a schedule from a raw (flat) encoding $raw_xs$ (used for convex optimization).
    /// $d$ is the number of dimensions, $w$ is the length of the time window.
    /// The length of $raw_xs$ must therefore be $d \cdot w$.
    pub fn from_raw(d: i32, w: i32, raw_xs: &[T]) -> Schedule<T> {
        assert_eq!(
            raw_xs.len() as i32,
            Schedule::<T>::raw_encoding_len(d, w),
            "length of raw encoding does not match expected length"
        );

        Schedule::new(
            (0..w as usize)
                .into_iter()
                .map(|t| {
                    let i = d as usize * t;
                    Config::new(raw_xs[i..i + d as usize].to_vec())
                })
                .collect(),
        )
    }

    /// Builds a raw (flat) encoding of a schedule (used for convex optimization) by stretching a config across the time window $w$.
    pub fn build_raw(w: i32, x: &Config<T>) -> Vec<T> {
        let raw_xs: Vec<T> = (0..w as usize)
            .into_iter()
            .flat_map(|_| x.iter().cloned())
            .collect();
        assert_eq!(
            raw_xs.len() as i32,
            Schedule::<T>::raw_encoding_len(x.d(), w),
            "length of raw encoding does not match expected length"
        );
        raw_xs
    }

    /// Returns the length of the raw encoding of $d$ dimensions across time window $w$.
    pub fn raw_encoding_len(d: i32, w: i32) -> i32 {
        d * w
    }
}

impl<'a, T> Index<usize> for Schedule<T>
where
    T: Value<'a>,
{
    type Output = Config<T>;

    fn index(&self, t: usize) -> &Config<T> {
        assert!(
            t < self.0.len(),
            "argument must denote one of {} time steps, is {}",
            self.0.len(),
            t + 1
        );
        &self.0[t]
    }
}

impl<'a, T> VecWrapper for Schedule<T>
where
    T: Value<'a>,
{
    type Item = Config<T>;

    fn to_vec(&self) -> &Vec<Self::Item> {
        &self.0
    }
}

impl<'a, T> FromIterator<Config<T>> for Schedule<T>
where
    T: Value<'a>,
{
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = Config<T>>,
    {
        Schedule::new(Vec::<Config<T>>::from_iter(iter))
    }
}

impl<'a, T> FromParallelIterator<Config<T>> for Schedule<T>
where
    T: Value<'a>,
{
    fn from_par_iter<I>(iter: I) -> Self
    where
        I: IntoParallelIterator<Item = Config<T>>,
    {
        Schedule::new(Vec::<Config<T>>::from_par_iter(iter))
    }
}

impl<'a, 'b, T> IntoParallelIterator for &'a Schedule<T>
where
    T: Value<'b>,
{
    type Item = &'a Config<T>;
    type Iter = Iter<'a, Config<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.par_iter()
    }
}

impl<'a, T> IntoParallelIterator for Schedule<T>
where
    T: Value<'a>,
{
    type Item = Config<T>;
    type Iter = IntoIter<Config<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.into_par_iter()
    }
}