socketioxide_core/
parser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//! Contains all the type and interfaces for the parser sub-crates.
//!
//! The parsing system in socketioxide is split in three phases for serialization and deserialization:
//!
//! ## Deserialization
//! * The SocketIO server receives a packet and calls [`Parse::decode_str`] or [`Parse::decode_bin`]
//!   to decode the incoming packet. If a [`ParseError::NeedsMoreBinaryData`] is returned, the server keeps the packet
//!   and waits for new incoming data.
//! * Once the packet is complete, the server dispatches the packet to the appropriate namespace
//!   and calls [`Parse::read_event`] to route the data to the appropriate event handler.
//! * If the user-provided handler has a `Data` extractor with a provided `T` type, the server
//!   calls [`Parse::decode_value`] to deserialize the data. This function will handle the event
//!   name as the first argument of the array, as well as variadic arguments.
//!
//! ## Serialization
//! * The user calls emit from the socket or namespace with custom `Serializable` data. The server calls
//!   [`Parse::encode_value`] to convert this to a raw [`Value`] to be included in the packet. The function
//!   will take care of handling the event name as the first argument of the array, along with variadic arguments.
//! * The server then calls [`Parse::encode`] to convert the payload provided by the user,
//!   along with other metadata (namespace, ack ID, etc.), into a fully serialized packet ready to be sent.

use std::{
    fmt,
    sync::{atomic::AtomicUsize, Mutex},
};

use bytes::Bytes;
use engineioxide::Str;
use serde::{de::Visitor, ser::Impossible, Deserialize, Serialize};

use crate::{packet::Packet, Value};

/// The parser state that is shared between the parser and the socket.io system.
/// Used to handle partial binary packets when receiving binary packets that have
/// adjacent binary attachments
#[derive(Debug, Default)]
pub struct ParserState {
    /// Partial binary packet that is being received
    /// Stored here until all the binary payloads are received for common parser
    pub partial_bin_packet: Mutex<Option<Packet>>,

    /// The number of expected binary attachments (used when receiving data for common parser)
    pub incoming_binary_cnt: AtomicUsize,
}

/// All socket.io parser should implement this trait.
/// Parsers should be stateless.
pub trait Parse: Default + Copy {
    /// The error produced when encoding a packet
    type EncodeError: std::error::Error;
    /// The error produced when decoding a packet
    type DecodeError: std::error::Error;

    /// Convert a packet into multiple payloads to be sent.
    fn encode(self, packet: Packet) -> Value;

    /// Parse a given input string. If the payload needs more adjacent binary packet,
    /// the partial packet will be kept and a [`ParseError::NeedsMoreBinaryData`] will be returned.
    fn decode_str(
        self,
        state: &ParserState,
        data: Str,
    ) -> Result<Packet, ParseError<Self::DecodeError>>;

    /// Parse a given input binary. If the payload needs more adjacent binary packet,
    /// the partial packet is still kept and a [`ParseError::NeedsMoreBinaryData`] will be returned.
    fn decode_bin(
        self,
        state: &ParserState,
        bin: Bytes,
    ) -> Result<Packet, ParseError<Self::DecodeError>>;

    /// Convert any serializable data to a generic [`Value`] to be later included as a payload in the packet.
    ///
    /// * Any data serialized will be wrapped in an array to match the socket.io format (`[data]`).
    /// * If the data is a tuple-like type the tuple will be expanded in the array (`[...data]`).
    /// * If provided the event name will be serialized as the first element of the array
    ///   (`[event, ...data]`) or (`[event, data]`).
    fn encode_value<T: ?Sized + Serialize>(
        self,
        data: &T,
        event: Option<&str>,
    ) -> Result<Value, Self::EncodeError>;

    /// Convert any generic [`Value`] to a deserializable type.
    /// It should always be an array (according to the serde model).
    ///
    /// * If `with_event` is true, we expect an event str as the first element and we will skip
    ///   it when deserializing data.
    /// * If `T` is a tuple-like type, all the remaining elements of the array will be
    ///   deserialized (`[...data]`).
    /// * If `T` is not a tuple-like type, the first element of the array will be deserialized (`[data]`).
    fn decode_value<'de, T: Deserialize<'de>>(
        self,
        value: &'de mut Value,
        with_event: bool,
    ) -> Result<T, Self::DecodeError>;

    /// Convert any generic [`Value`] to a type with the default serde impl without binary + event tricks.
    /// This is mainly used for connect payloads.
    fn decode_default<'de, T: Deserialize<'de>>(
        self,
        value: Option<&'de Value>,
    ) -> Result<T, Self::DecodeError>;

    /// Convert any type to a generic [`Value`] with the default serde impl without binary + event tricks.
    /// This is mainly used for connect payloads.
    fn encode_default<T: ?Sized + Serialize>(self, data: &T) -> Result<Value, Self::EncodeError>;

    /// Try to read the event name from the given payload data.
    /// The event name should be the first element of the provided array according to the serde model.
    fn read_event(self, value: &Value) -> Result<&str, Self::DecodeError>;
}

/// Errors when parsing/serializing socket.io packets
#[derive(thiserror::Error, Debug)]
pub enum ParseError<E: std::error::Error> {
    /// Invalid packet type
    #[error("invalid packet type")]
    InvalidPacketType,

    /// Invalid ack id
    #[error("invalid ack id")]
    InvalidAckId,

    /// Invalid event name
    #[error("invalid event name")]
    InvalidEventName,

    /// Invalid data
    #[error("invalid data")]
    InvalidData,

    /// Invalid namespace
    #[error("invalid namespace")]
    InvalidNamespace,

    /// Invalid attachments
    #[error("invalid attachments")]
    InvalidAttachments,

    /// Received unexpected binary data
    #[error(
        "received unexpected binary data. Make sure you are using the same parser on both ends."
    )]
    UnexpectedBinaryPacket,

    /// Received unexpected string data
    #[error(
        "received unexpected string data. Make sure you are using the same parser on both ends."
    )]
    UnexpectedStringPacket,

    /// Needs more binary data before deserialization. It is not exactly an error, it is used for control flow,
    /// e.g the common parser needs adjacent binary packets and therefore will returns
    /// `NeedsMoreBinaryData` n times for n adjacent binary packet expected.
    ///
    /// In this case the user should call again the parser with the next binary payload.
    #[error("needs more binary data for packet completion")]
    NeedsMoreBinaryData,

    /// The inner parser error
    #[error("parser error: {0:?}")]
    ParserError(#[from] E),
}
impl<E: std::error::Error> ParseError<E> {
    /// Wrap the [`ParseError::ParserError`] variant with a new error type
    pub fn wrap_err<E1: std::error::Error>(self, f: impl FnOnce(E) -> E1) -> ParseError<E1> {
        match self {
            Self::ParserError(e) => ParseError::ParserError(f(e)),
            ParseError::InvalidPacketType => ParseError::InvalidPacketType,
            ParseError::InvalidAckId => ParseError::InvalidAckId,
            ParseError::InvalidEventName => ParseError::InvalidEventName,
            ParseError::InvalidData => ParseError::InvalidData,
            ParseError::InvalidNamespace => ParseError::InvalidNamespace,
            ParseError::InvalidAttachments => ParseError::InvalidAttachments,
            ParseError::UnexpectedBinaryPacket => ParseError::UnexpectedBinaryPacket,
            ParseError::UnexpectedStringPacket => ParseError::UnexpectedStringPacket,
            ParseError::NeedsMoreBinaryData => ParseError::NeedsMoreBinaryData,
        }
    }
}

/// A seed that can be used to deserialize only the 1st element of a sequence
pub struct FirstElement<T>(std::marker::PhantomData<T>);
impl<T> Default for FirstElement<T> {
    fn default() -> Self {
        Self(Default::default())
    }
}
impl<'de, T: serde::Deserialize<'de>> serde::de::Visitor<'de> for FirstElement<T> {
    type Value = T;

    fn expecting(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(formatter, "a sequence in which we care about first element",)
    }

    fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
    where
        A: serde::de::SeqAccess<'de>,
    {
        use serde::de::Error;
        let data = seq
            .next_element::<T>()?
            .ok_or(A::Error::custom("first element not found"));

        // Consume the rest of the sequence
        while seq.next_element::<serde::de::IgnoredAny>()?.is_some() {}

        data
    }
}

impl<'de, T: serde::Deserialize<'de>> serde::de::DeserializeSeed<'de> for FirstElement<T> {
    type Value = T;

    fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        deserializer.deserialize_seq(self)
    }
}

/// Serializer and deserializer that simply return if the root object is a tuple or not.
/// It is used with [`is_de_tuple`] and [`is_ser_tuple`].
/// Thanks to this information we can expand tuple data into multiple arguments
/// while serializing vectors as a single value.
struct IsTupleSerde;
#[derive(Debug)]
struct IsTupleSerdeError(bool);
impl fmt::Display for IsTupleSerdeError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "IsTupleSerializerError: {}", self.0)
    }
}
impl std::error::Error for IsTupleSerdeError {}
impl serde::ser::Error for IsTupleSerdeError {
    fn custom<T: fmt::Display>(_msg: T) -> Self {
        IsTupleSerdeError(false)
    }
}
impl serde::de::Error for IsTupleSerdeError {
    fn custom<T: fmt::Display>(_msg: T) -> Self {
        IsTupleSerdeError(false)
    }
}

impl<'de> serde::Deserializer<'de> for IsTupleSerde {
    type Error = IsTupleSerdeError;

    serde::forward_to_deserialize_any! {
        bool i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64 char str
        string unit unit_struct seq  map
        struct enum identifier ignored_any bytes byte_buf option
    }

    fn deserialize_any<V: Visitor<'de>>(self, _visitor: V) -> Result<V::Value, Self::Error> {
        Err(IsTupleSerdeError(false))
    }

    fn deserialize_tuple<V: Visitor<'de>>(
        self,
        _len: usize,
        _visitor: V,
    ) -> Result<V::Value, Self::Error> {
        Err(IsTupleSerdeError(true))
    }

    fn deserialize_tuple_struct<V: Visitor<'de>>(
        self,
        _name: &'static str,
        _len: usize,
        _visitor: V,
    ) -> Result<V::Value, Self::Error> {
        Err(IsTupleSerdeError(true))
    }

    fn deserialize_newtype_struct<V: Visitor<'de>>(
        self,
        _name: &'static str,
        _visitor: V,
    ) -> Result<V::Value, Self::Error> {
        Err(IsTupleSerdeError(true))
    }
}

impl serde::Serializer for IsTupleSerde {
    type Ok = bool;
    type Error = IsTupleSerdeError;
    type SerializeSeq = Impossible<bool, IsTupleSerdeError>;
    type SerializeTuple = Impossible<bool, IsTupleSerdeError>;
    type SerializeTupleStruct = Impossible<bool, IsTupleSerdeError>;
    type SerializeTupleVariant = Impossible<bool, IsTupleSerdeError>;
    type SerializeMap = Impossible<bool, IsTupleSerdeError>;
    type SerializeStruct = Impossible<bool, IsTupleSerdeError>;
    type SerializeStructVariant = Impossible<bool, IsTupleSerdeError>;

    fn serialize_bool(self, _v: bool) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_i8(self, _v: i8) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_i16(self, _v: i16) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_i32(self, _v: i32) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_i64(self, _v: i64) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_u8(self, _v: u8) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_u16(self, _v: u16) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_u32(self, _v: u32) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_u64(self, _v: u64) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_f32(self, _v: f32) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_f64(self, _v: f64) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_char(self, _v: char) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_str(self, _v: &str) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_bytes(self, _v: &[u8]) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_none(self) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_some<T>(self, _value: &T) -> Result<Self::Ok, Self::Error>
    where
        T: ?Sized + serde::Serialize,
    {
        Ok(false)
    }

    fn serialize_unit(self) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_unit_struct(self, _name: &'static str) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_unit_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
    ) -> Result<Self::Ok, Self::Error> {
        Ok(false)
    }

    fn serialize_newtype_struct<T>(
        self,
        _name: &'static str,
        _value: &T,
    ) -> Result<Self::Ok, Self::Error>
    where
        T: ?Sized + serde::Serialize,
    {
        Ok(true)
    }

    fn serialize_newtype_variant<T>(
        self,
        _name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
        _value: &T,
    ) -> Result<Self::Ok, Self::Error>
    where
        T: ?Sized + serde::Serialize,
    {
        Ok(false)
    }

    fn serialize_seq(self, _len: Option<usize>) -> Result<Self::SerializeSeq, Self::Error> {
        Err(IsTupleSerdeError(false))
    }

    fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple, Self::Error> {
        Err(IsTupleSerdeError(true))
    }

    fn serialize_tuple_struct(
        self,
        _name: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeTupleStruct, Self::Error> {
        Err(IsTupleSerdeError(true))
    }

    fn serialize_tuple_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeTupleVariant, Self::Error> {
        Err(IsTupleSerdeError(false))
    }

    fn serialize_map(self, _len: Option<usize>) -> Result<Self::SerializeMap, Self::Error> {
        Err(IsTupleSerdeError(false))
    }

    fn serialize_struct(
        self,
        _name: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeStruct, Self::Error> {
        Err(IsTupleSerdeError(false))
    }

    fn serialize_struct_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeStructVariant, Self::Error> {
        Err(IsTupleSerdeError(false))
    }
}

/// Returns true if the value is a tuple-like type according to the serde model.
pub fn is_ser_tuple<T: ?Sized + serde::Serialize>(value: &T) -> bool {
    match value.serialize(IsTupleSerde) {
        Ok(v) | Err(IsTupleSerdeError(v)) => v,
    }
}

/// Returns true if the type is a tuple-like type according to the serde model.
pub fn is_de_tuple<'de, T: serde::Deserialize<'de>>() -> bool {
    match T::deserialize(IsTupleSerde) {
        Ok(_) => unreachable!(),
        Err(IsTupleSerdeError(v)) => v,
    }
}
#[cfg(test)]
mod test {
    use super::*;
    use serde::{Deserialize, Serialize};

    #[test]
    fn is_tuple() {
        assert!(is_ser_tuple(&(1, 2, 3)));
        assert!(is_de_tuple::<(usize, usize, usize)>());

        assert!(is_ser_tuple(&[1, 2, 3]));
        assert!(is_de_tuple::<[usize; 3]>());

        #[derive(Serialize, Deserialize)]
        struct TupleStruct<'a>(&'a str);
        assert!(is_ser_tuple(&TupleStruct("test")));
        assert!(is_de_tuple::<TupleStruct<'_>>());

        assert!(!is_ser_tuple(&vec![1, 2, 3]));
        assert!(!is_de_tuple::<Vec<usize>>());

        #[derive(Serialize, Deserialize)]
        struct UnitStruct;
        assert!(!is_ser_tuple(&UnitStruct));
        assert!(!is_de_tuple::<UnitStruct>());
    }
}