snowflake_ng/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
// Copyright 2024 Krysztal Huang
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#![doc = include_str!("../README.md")]
use std::{
ops::Deref,
sync::atomic::{AtomicU64, Ordering},
time::Duration,
};
use futures::executor;
use futures_timer::Delay;
use rand::RngCore;
pub mod provider;
pub trait TimeProvider {
/// Timestamp fetcher.
fn timestamp(&self) -> u64;
}
/// Generated [Snowflake]
///
/// # Implementation
///
/// Let me describe snowflake ID (*SID in below*) in simple words.
///
/// Firstly, we have to know this structure of SID.
///
/// SIDs are actually [i64] types. It's length 64bit and 1bit for sign.
///
/// So it looks like this:
///
/// ```text
/// | sign | data | # sign not used.
/// | 1bit | 63bit |
/// ```
///
/// Next, I'll introduce standard SID design to you. Why STANDARD? Because there are some variant, just ignore them use Twitter's(formally X) design only.
///
/// The standard SID contains these content:
///
/// - Timestamp: 41bit
/// - Identifier(or Machine ID?): 10bit
/// - Sequence Number: 12bit
///
/// Our SID structure looks like this
/// ```text
/// | sign | data |
/// | 0 | Timestamp | Identifier | Sequence Number |
/// | 1bit | 41bit | 10bit | 12bit |
/// ```
///
/// ✨ So cool, you in just understood the SID structure!
///
/// Ok, let's deep in **_DARK_**.
///
/// ## Timestamp
///
/// In standard design, timestamp can start at any time.
///
/// But here, the precision we need for the timestamp is to the millisecond, so exactly 41bits.
///
/// ## Identifier
///
/// Base the design of distributed systems, we will have many machine(or instance) running at same time.
///
/// So we must distinguish between them. Based identifier have 10bit, we can have 1024 instance at same time, thats so cool!
///
/// ## Sequence Number
///
/// Have you just noticed the `Sequence Number`? It have 12bit, means it can process at most 4096 message(or other things if you want) in one millisecond.
///
/// Above all, we can know: the entire system can produce at most `1024 * 4096 = 4194304` pieces of message at one millisecond!
///
/// ## Out of assigned
///
/// But there is always the possibility that we will encounter a situation: all the SIDs for this millisecond have been assigned!
///
/// At this time, the instance must waiting for next millisecond. At next millisecond, we will have new 4096 SID can be assigned.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Snowflake(i64);
impl From<Snowflake> for i64 {
fn from(value: Snowflake) -> Self {
value.0
}
}
impl Deref for Snowflake {
type Target = i64;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AsRef<i64> for Snowflake {
fn as_ref(&self) -> &i64 {
self
}
}
#[derive(Debug)]
pub struct SnowflakeConfiguration {
/// Identifier ID
///
/// [SnowflakeGenerator] will use **_10bit_**
///
/// By default, `identifier_id` set to the number generated by `rand` crate.
pub identifier: u64,
}
impl SnowflakeConfiguration {
pub fn with_identifier(identifier: u64) -> Self {
Self { identifier }
}
}
impl Default for SnowflakeConfiguration {
fn default() -> Self {
Self {
identifier: rand::thread_rng().next_u64(),
}
}
}
unsafe impl Send for SnowflakeConfiguration {}
/// Filling timestamp by mask
fn fill_timestamp(sid: u64, timestamp: u64) -> u64 {
const MASK: u64 = (1u64 << 41) - 1;
let truncated_timestamp = timestamp & MASK; // Make sure `timestamp` up to 41bit
let filled = truncated_timestamp << 22;
(sid & !(MASK << 22)) | filled
}
/// Filling identifier by mask
fn fill_identifier(sid: u64, identifier: u64) -> u64 {
const MASK: u64 = (1u64 << 10) - 1; // 限定为10位
let truncated_identifier = identifier & MASK; // Make sure `identifier` up to 10bit
let filled = truncated_identifier << 12;
(sid & !(MASK << 12)) | filled
}
/// Filling sequence by mask
fn fill_sequence(sid: u64, sequence: u64) -> u64 {
const MASK: u64 = (1u64 << 12) - 1;
let truncated_sequence = sequence & MASK; // // Make sure `sequence` up to 12bit
// Does not need to shift
(sid & !MASK) | truncated_sequence
}
pub fn filling<T0, T1, T2>(dest: u64, timestamp: T0, identifier: T1, sequence: T2) -> u64
where
T0: Into<u64>,
T1: Into<u64>,
T2: Into<u64>,
{
let sid = fill_timestamp(dest, timestamp.into());
let sid = fill_identifier(sid, identifier.into());
fill_sequence(sid, sequence.into())
}
/// Generating [Snowflake]
///
/// Recommended keep this generator single-instance for one instance's SID generation.
///
/// # Thread safety
///
/// You can use [::std::sync::Arc] sharing ownership between thread.
#[derive(Debug, Default)]
pub struct SnowflakeGenerator {
timestamp_sequence: AtomicU64,
cfg: SnowflakeConfiguration,
}
const MAX_SEQUENCE: u16 = 0xFFF; // 12bit sequence
impl SnowflakeGenerator {
pub fn with_cfg(cfg: SnowflakeConfiguration) -> Self {
Self {
cfg,
timestamp_sequence: AtomicU64::new(0),
}
}
pub async fn assign<T>(&self, provider: &T) -> Snowflake
where
T: TimeProvider + Sync + Send,
{
loop {
let timestamp = provider.timestamp();
let current = self.timestamp_sequence.load(Ordering::Relaxed);
let current_timestamp = current >> 16;
let current_sequence = (current & 0xFFFF) as u16;
match current_timestamp.cmp(×tamp) {
std::cmp::Ordering::Less => {
// update timestamp
let new_value = timestamp << 16;
if self
.timestamp_sequence
.compare_exchange(current, new_value, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
let sid = fill_timestamp(0, timestamp);
let sid = fill_identifier(sid, self.cfg.identifier);
let sid = fill_sequence(sid, 0);
return Snowflake(sid as i64);
}
}
std::cmp::Ordering::Equal => {
if current_sequence >= MAX_SEQUENCE {
// Sequence reached MAX, waiting for next millisecond
Delay::new(Duration::from_millis(1)).await;
continue;
}
let new_sequence = current_sequence + 1;
let new_value = (timestamp << 16) | new_sequence as u64;
if self
.timestamp_sequence
.compare_exchange(current, new_value, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
let sid = fill_timestamp(0, timestamp);
let sid = fill_identifier(sid, self.cfg.identifier);
let sid = fill_sequence(sid, new_sequence as u64);
return Snowflake(sid as i64);
}
}
std::cmp::Ordering::Greater => Delay::new(Duration::from_millis(1)).await,
};
}
}
#[cfg(feature = "sync")]
pub fn assign_sync<T>(&self, provider: &T) -> Snowflake
where
T: TimeProvider + Sync + Send,
{
executor::block_on(self.assign(provider))
}
}
unsafe impl Send for SnowflakeGenerator {}
unsafe impl Sync for SnowflakeGenerator {}
#[cfg(test)]
mod tests {
use std::{collections::HashSet, sync::Arc};
use parking_lot::RwLock;
use provider::STD_PROVIDER;
use tokio::spawn;
use super::*;
#[test]
fn test_fill_timestamp() {
// Case1
let sid = 0u64;
let timestamp = 0b101010;
let expected = 42 << 22;
let result = fill_timestamp(sid, timestamp);
assert_eq!(result, expected);
// Case2
let sid = 0u64;
let timestamp = (1u64 << 42) - 1;
let expected = ((1u64 << 41) - 1) << 22;
let result = fill_timestamp(sid, timestamp);
assert_eq!(result, expected);
}
#[test]
fn test_fill_identifier() {
// Case1
let sid = 0u64;
let identifier = 0b110101;
let expected = 53 << 12;
let result = fill_identifier(sid, identifier);
assert_eq!(result, expected);
// Case2
let sid = 0u64;
let identifier = (1u64 << 11) - 1;
let expected = ((1u64 << 10) - 1) << 12;
let result = fill_identifier(sid, identifier);
assert_eq!(result, expected);
}
#[test]
fn test_fill_sequence() {
// Case1
let sid = 0u64;
let sequence = 0b1001;
let expected = 9;
let result = fill_sequence(sid, sequence);
assert_eq!(result, expected);
// Case2
let sid = 0u64;
let sequence = (1u64 << 13) - 1;
let expected = (1u64 << 12) - 1;
let result = fill_sequence(sid, sequence);
assert_eq!(result, expected);
}
#[test]
fn test_filling() {
let sid = 0u64;
let timestamp = 0b10101010101010101010101010101010101010101u64;
let identifier = 0b110101u64;
let sequence = 0b1001u64;
let expected = (timestamp << 22) | (identifier << 12) | sequence;
let result = filling(sid, timestamp, identifier, sequence);
assert_eq!(result, expected);
}
#[tokio::test]
async fn test_assign() {
let generator = Arc::new(SnowflakeGenerator::default());
for _ in 0..1024 {
generator.assign(&provider::TIME_CRATE_PROVIDER).await;
}
}
#[tokio::test]
async fn test_multithread_assign() {
let generator = Arc::new(SnowflakeGenerator::default());
let mut handles = vec![];
let id_set = Arc::new(RwLock::new(HashSet::new()));
for _ in 0..1000 {
let generator = Arc::clone(&generator);
let id_set = Arc::clone(&id_set);
let handle = spawn(async move {
for _ in 0..1000 {
let id = generator.assign(&STD_PROVIDER).await;
let mut set = id_set.write();
if set.contains(&id) {
panic!("Duplicate `Snowflake` generated!");
}
set.insert(id);
}
});
handles.push(handle);
}
futures::future::join_all(handles).await;
assert_eq!(
id_set.read().len(),
1000 * 1000,
"Some `Snowflake` were lost!"
);
}
}