1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    Opcode,
    Operand,
    RegistersLoad,
    RegistersLoadCircuit,
    RegistersStore,
    RegistersStoreCircuit,
    StackMatches,
    StackProgram,
};
use console::{
    network::prelude::*,
    program::{Literal, LiteralType, Plaintext, PlaintextType, Register, RegisterType, Value},
    types::Boolean,
};

/// Computes whether `first` equals `second` as a boolean, storing the outcome in `destination`.
pub type IsEq<N> = IsInstruction<N, { Variant::IsEq as u8 }>;
/// Computes whether `first` does **not** equals `second` as a boolean, storing the outcome in `destination`.
pub type IsNeq<N> = IsInstruction<N, { Variant::IsNeq as u8 }>;

enum Variant {
    IsEq,
    IsNeq,
}

/// Computes an equality operation on two operands, and stores the outcome in `destination`.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct IsInstruction<N: Network, const VARIANT: u8> {
    /// The operands.
    operands: Vec<Operand<N>>,
    /// The destination register.
    destination: Register<N>,
}

impl<N: Network, const VARIANT: u8> IsInstruction<N, VARIANT> {
    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        match VARIANT {
            0 => Opcode::Is("is.eq"),
            1 => Opcode::Is("is.neq"),
            _ => panic!("Invalid 'is' instruction opcode"),
        }
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> &[Operand<N>] {
        // Sanity check that the operands is exactly two inputs.
        debug_assert!(self.operands.len() == 2, "Instruction '{}' must have two operands", Self::opcode());
        // Return the operands.
        &self.operands
    }

    /// Returns the destination register.
    #[inline]
    pub fn destinations(&self) -> Vec<Register<N>> {
        vec![self.destination.clone()]
    }
}

impl<N: Network, const VARIANT: u8> IsInstruction<N, VARIANT> {
    /// Evaluates the instruction.
    #[inline]
    pub fn evaluate(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Retrieve the inputs.
        let input_a = registers.load(stack, &self.operands[0])?;
        let input_b = registers.load(stack, &self.operands[1])?;

        // Check the inputs.
        let output = match VARIANT {
            0 => Literal::Boolean(Boolean::new(input_a == input_b)),
            1 => Literal::Boolean(Boolean::new(input_a != input_b)),
            _ => bail!("Invalid 'is' variant: {VARIANT}"),
        };
        // Store the output.
        registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(output)))
    }

    /// Executes the instruction.
    #[inline]
    pub fn execute<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Retrieve the inputs.
        let input_a = registers.load_circuit(stack, &self.operands[0])?;
        let input_b = registers.load_circuit(stack, &self.operands[1])?;

        // Check the inputs.
        let output = match VARIANT {
            0 => circuit::Literal::Boolean(input_a.is_equal(&input_b)),
            1 => circuit::Literal::Boolean(input_a.is_not_equal(&input_b)),
            _ => bail!("Invalid 'is' variant: {VARIANT}"),
        };
        // Convert the output to a stack value.
        let output = circuit::Value::Plaintext(circuit::Plaintext::Literal(output, Default::default()));
        // Store the output.
        registers.store_circuit(stack, &self.destination, output)
    }

    /// Finalizes the instruction.
    #[inline]
    pub fn finalize(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        self.evaluate(stack, registers)
    }

    /// Returns the output type from the given program and input types.
    #[inline]
    pub fn output_types(
        &self,
        _stack: &impl StackProgram<N>,
        input_types: &[RegisterType<N>],
    ) -> Result<Vec<RegisterType<N>>> {
        // Ensure the number of input types is correct.
        if input_types.len() != 2 {
            bail!("Instruction '{}' expects 2 inputs, found {} inputs", Self::opcode(), input_types.len())
        }
        // Ensure the operands are of the same type.
        if input_types[0] != input_types[1] {
            bail!(
                "Instruction '{}' expects inputs of the same type. Found inputs of type '{}' and '{}'",
                Self::opcode(),
                input_types[0],
                input_types[1]
            )
        }
        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        match VARIANT {
            0 | 1 => Ok(vec![RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Boolean))]),
            _ => bail!("Invalid 'is' variant: {VARIANT}"),
        }
    }
}

impl<N: Network, const VARIANT: u8> Parser for IsInstruction<N, VARIANT> {
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        // Parse the opcode from the string.
        let (string, _) = tag(*Self::opcode())(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the first operand from the string.
        let (string, first) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the second operand from the string.
        let (string, second) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "into" from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;

        Ok((string, Self { operands: vec![first, second], destination }))
    }
}

impl<N: Network, const VARIANT: u8> FromStr for IsInstruction<N, VARIANT> {
    type Err = Error;

    /// Parses a string into an operation.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network, const VARIANT: u8> Debug for IsInstruction<N, VARIANT> {
    /// Prints the operation as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network, const VARIANT: u8> Display for IsInstruction<N, VARIANT> {
    /// Prints the operation to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Ensure the number of operands is 2.
        if self.operands.len() != 2 {
            eprintln!("The number of operands must be 2, found {}", self.operands.len());
            return Err(fmt::Error);
        }
        // Print the operation.
        write!(f, "{} ", Self::opcode())?;
        self.operands.iter().try_for_each(|operand| write!(f, "{operand} "))?;
        write!(f, "into {}", self.destination)
    }
}

impl<N: Network, const VARIANT: u8> FromBytes for IsInstruction<N, VARIANT> {
    /// Reads the operation from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Initialize the vector for the operands.
        let mut operands = Vec::with_capacity(2);
        // Read the operands.
        for _ in 0..2 {
            operands.push(Operand::read_le(&mut reader)?);
        }
        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;

        // Return the operation.
        Ok(Self { operands, destination })
    }
}

impl<N: Network, const VARIANT: u8> ToBytes for IsInstruction<N, VARIANT> {
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Ensure the number of operands is 2.
        if self.operands.len() != 2 {
            return Err(error(format!("The number of operands must be 2, found {}", self.operands.len())));
        }
        // Write the operands.
        self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
        // Write the destination register.
        self.destination.write_le(&mut writer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        process::Stack,
        program::test_helpers::{sample_finalize_registers, sample_registers},
    };
    use circuit::AleoV0;
    use console::{network::Testnet3, program::Identifier};
    use snarkvm_synthesizer_snark::{ProvingKey, VerifyingKey};

    use std::collections::HashMap;

    type CurrentNetwork = Testnet3;
    type CurrentAleo = AleoV0;

    const ITERATIONS: usize = 100;

    /// Samples the stack. Note: Do not replicate this for real program use, it is insecure.
    #[allow(clippy::type_complexity)]
    fn sample_stack(
        opcode: Opcode,
        type_a: LiteralType,
        type_b: LiteralType,
        mode_a: circuit::Mode,
        mode_b: circuit::Mode,
        cache: &mut HashMap<String, (ProvingKey<CurrentNetwork>, VerifyingKey<CurrentNetwork>)>,
    ) -> Result<(Stack<CurrentNetwork>, Vec<Operand<CurrentNetwork>>, Register<CurrentNetwork>)> {
        use crate::{Process, Program};

        // Initialize the opcode.
        let opcode = opcode.to_string();

        // Initialize the function name.
        let function_name = Identifier::<CurrentNetwork>::from_str("run")?;

        // Initialize the registers.
        let r0 = Register::Locator(0);
        let r1 = Register::Locator(1);
        let r2 = Register::Locator(2);

        // Initialize the program.
        let program = Program::from_str(&format!(
            "program testing.aleo;
            function {function_name}:
                input {r0} as {type_a}.{mode_a};
                input {r1} as {type_b}.{mode_b};
                {opcode} {r0} {r1} into {r2};
                finalize {r0} {r1};

            finalize {function_name}:
                input {r0} as {type_a}.public;
                input {r1} as {type_b}.public;
                {opcode} {r0} {r1} into {r2};
        "
        ))?;

        // Initialize the operands.
        let operand_a = Operand::Register(r0);
        let operand_b = Operand::Register(r1);
        let operands = vec![operand_a, operand_b];

        // Initialize the stack.
        let stack = Stack::new(&Process::load_with_cache(cache)?, &program)?;

        Ok((stack, operands, r2))
    }

    fn check_is<const VARIANT: u8>(
        operation: impl FnOnce(
            Vec<Operand<CurrentNetwork>>,
            Register<CurrentNetwork>,
        ) -> IsInstruction<CurrentNetwork, VARIANT>,
        opcode: Opcode,
        literal_a: &Literal<CurrentNetwork>,
        literal_b: &Literal<CurrentNetwork>,
        mode_a: &circuit::Mode,
        mode_b: &circuit::Mode,
        cache: &mut HashMap<String, (ProvingKey<CurrentNetwork>, VerifyingKey<CurrentNetwork>)>,
    ) {
        use circuit::Eject;

        println!("Checking '{opcode}' for '{literal_a}.{mode_a}' and '{literal_b}.{mode_b}'");

        // Initialize the types.
        let type_a = literal_a.to_type();
        let type_b = literal_b.to_type();
        assert_eq!(type_a, type_b, "The two literals must be the *same* type for this test");

        // Initialize the stack.
        let (stack, operands, destination) = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b, cache).unwrap();
        // Initialize the operation.
        let operation = operation(operands, destination.clone());
        // Initialize the function name.
        let function_name = Identifier::from_str("run").unwrap();
        // Initialize a destination operand.
        let destination_operand = Operand::Register(destination);

        /* First, check the operation *succeeds* when both operands are `literal_a.mode_a`. */
        {
            // Attempt to compute the valid operand case.
            let values = [(literal_a, None), (literal_a, None)];
            let mut registers = sample_registers(&stack, &function_name, &values).unwrap();
            operation.evaluate(&stack, &mut registers).unwrap();

            // Retrieve the output.
            let output_a = registers.load_literal(&stack, &destination_operand).unwrap();

            // Ensure the output is correct.
            if let Literal::Boolean(output_a) = output_a {
                match VARIANT {
                    0 => assert!(*output_a, "Instruction '{operation}' failed (console): {literal_a} {literal_a}"),
                    1 => assert!(
                        !*output_a,
                        "Instruction '{operation}' should have failed (console): {literal_a} {literal_a}"
                    ),
                    _ => panic!("Found an invalid 'is' variant in the test"),
                }
            } else {
                panic!("The output must be a boolean (console)");
            }

            // Attempt to compute the valid operand case.
            let values = [(literal_a, Some(*mode_a)), (literal_a, Some(*mode_a))];
            let mut registers = sample_registers(&stack, &function_name, &values).unwrap();
            operation.execute::<CurrentAleo>(&stack, &mut registers).unwrap();

            // Retrieve the output.
            let output_b = registers.load_literal_circuit(&stack, &destination_operand).unwrap();

            // Ensure the output is correct.
            if let circuit::Literal::Boolean(output_b) = output_b {
                match VARIANT {
                    0 => assert!(
                        output_b.eject_value(),
                        "Instruction '{operation}' failed (circuit): {literal_a}.{mode_a} {literal_a}.{mode_a}"
                    ),
                    1 => assert!(
                        !output_b.eject_value(),
                        "Instruction '{operation}' should have failed (circuit): {literal_a}.{mode_a} {literal_a}.{mode_a}"
                    ),
                    _ => panic!("Found an invalid 'is' variant in the test"),
                }
            } else {
                panic!("The output must be a boolean (circuit)");
            }

            // Ensure the circuit is satisfied.
            match VARIANT {
                0 => assert!(
                    <CurrentAleo as circuit::Environment>::is_satisfied(),
                    "Instruction '{operation}' should be satisfied (circuit): {literal_a}.{mode_a} {literal_a}.{mode_a}"
                ),
                1 => assert!(
                    <CurrentAleo as circuit::Environment>::is_satisfied(),
                    "Instruction '{operation}' should be satisfied (circuit): {literal_a}.{mode_a} {literal_a}.{mode_a}"
                ),
                _ => panic!("Found an invalid 'is' variant in the test"),
            }

            // Reset the circuit.
            <CurrentAleo as circuit::Environment>::reset();

            // Attempt to finalize the valid operand case.
            let mut registers = sample_finalize_registers(&stack, &function_name, &[literal_a, literal_a]).unwrap();
            operation.finalize(&stack, &mut registers).unwrap();

            // Retrieve the output.
            let output_c = registers.load_literal(&stack, &destination_operand).unwrap();

            // Ensure the output is correct.
            if let Literal::Boolean(output_c) = output_c {
                match VARIANT {
                    0 => assert!(*output_c, "Instruction '{operation}' failed (finalize): {literal_a} {literal_a}"),
                    1 => assert!(
                        !*output_c,
                        "Instruction '{operation}' should have failed (finalize): {literal_a} {literal_a}"
                    ),
                    _ => panic!("Found an invalid 'is' variant in the test"),
                }
            } else {
                panic!("The output must be a boolean (finalize)");
            }
        }
        /* Next, check the mismatching literals *fail*. */
        if literal_a != literal_b {
            // Attempt to compute the valid operand case.
            let values = [(literal_a, None), (literal_b, None)];
            let mut registers = sample_registers(&stack, &function_name, &values).unwrap();
            operation.evaluate(&stack, &mut registers).unwrap();

            // Retrieve the output.
            let output_a = registers.load_literal(&stack, &destination_operand).unwrap();

            // Ensure the output is correct.
            if let Literal::Boolean(output_a) = output_a {
                match VARIANT {
                    0 => assert!(
                        !*output_a,
                        "Instruction '{operation}' should have failed (console): {literal_a} {literal_b}"
                    ),
                    1 => assert!(*output_a, "Instruction '{operation}' failed (console): {literal_a} {literal_b}"),
                    _ => panic!("Found an invalid 'is' variant in the test"),
                }
            } else {
                panic!("The output must be a boolean (console)");
            }

            // Attempt to compute the valid operand case.
            let values = [(literal_a, Some(*mode_a)), (literal_b, Some(*mode_b))];
            let mut registers = sample_registers(&stack, &function_name, &values).unwrap();
            operation.execute::<CurrentAleo>(&stack, &mut registers).unwrap();

            // Retrieve the output.
            let output_b = registers.load_literal_circuit(&stack, &destination_operand).unwrap();

            // Ensure the output is correct.
            if let circuit::Literal::Boolean(output_b) = output_b {
                match VARIANT {
                    0 => assert!(
                        !output_b.eject_value(),
                        "Instruction '{operation}' failed (circuit): {literal_a}.{mode_a} {literal_b}.{mode_b}"
                    ),
                    1 => assert!(
                        output_b.eject_value(),
                        "Instruction '{operation}' should have failed (circuit): {literal_a}.{mode_a} {literal_b}.{mode_b}"
                    ),
                    _ => panic!("Found an invalid 'is' variant in the test"),
                }
            } else {
                panic!("The output must be a boolean (circuit)");
            }

            // Ensure the circuit is correct.
            match VARIANT {
                0 => assert!(
                    <CurrentAleo as circuit::Environment>::is_satisfied(),
                    "Instruction '{operation}' should be satisfied (circuit): {literal_a}.{mode_a} {literal_b}.{mode_b}"
                ),
                1 => assert!(
                    <CurrentAleo as circuit::Environment>::is_satisfied(),
                    "Instruction '{operation}' should be satisfied (circuit): {literal_a}.{mode_a} {literal_b}.{mode_b}"
                ),
                _ => panic!("Found an invalid 'is' variant in the test"),
            }

            // Reset the circuit.
            <CurrentAleo as circuit::Environment>::reset();

            // Attempt to finalize the valid operand case.
            let mut registers = sample_finalize_registers(&stack, &function_name, &[literal_a, literal_b]).unwrap();
            operation.finalize(&stack, &mut registers).unwrap();

            // Retrieve the output.
            let output_c = registers.load_literal(&stack, &destination_operand).unwrap();

            // Ensure the output is correct.
            if let Literal::Boolean(output_c) = output_c {
                match VARIANT {
                    0 => assert!(
                        !*output_c,
                        "Instruction '{operation}' should have failed (finalize): {literal_a} {literal_b}"
                    ),
                    1 => assert!(*output_c, "Instruction '{operation}' failed (finalize): {literal_a} {literal_b}"),
                    _ => panic!("Found an invalid 'is' variant in the test"),
                }
            } else {
                panic!("The output must be a boolean (finalize)");
            }
        }
    }

    fn check_is_fails(
        opcode: Opcode,
        literal_a: &Literal<CurrentNetwork>,
        literal_b: &Literal<CurrentNetwork>,
        mode_a: &circuit::Mode,
        mode_b: &circuit::Mode,
        cache: &mut HashMap<String, (ProvingKey<CurrentNetwork>, VerifyingKey<CurrentNetwork>)>,
    ) {
        // Initialize the types.
        let type_a = literal_a.to_type();
        let type_b = literal_b.to_type();
        assert_ne!(type_a, type_b, "The two literals must be *different* types for this test");

        // If the types mismatch, ensure the stack fails to initialize.
        let result = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b, cache);
        assert!(
            result.is_err(),
            "Stack should have failed to initialize for: {opcode} {type_a}.{mode_a} {type_b}.{mode_b}"
        );
    }

    #[test]
    fn test_is_eq_succeeds() {
        // Initialize the operation.
        let operation = |operands, destination| IsEq::<CurrentNetwork> { operands, destination };
        // Initialize the opcode.
        let opcode = IsEq::<CurrentNetwork>::opcode();

        // Prepare the rng.
        let mut rng = TestRng::default();

        // Prepare the test.
        let modes_a = [circuit::Mode::Public, circuit::Mode::Private];
        let modes_b = [circuit::Mode::Public, circuit::Mode::Private];

        // Prepare the key cache.
        let mut cache = Default::default();

        for _ in 0..ITERATIONS {
            let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
            let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
            for (literal_a, literal_b) in literals_a.iter().zip_eq(literals_b.iter()) {
                for mode_a in &modes_a {
                    for mode_b in &modes_b {
                        // Check the operation.
                        check_is(operation, opcode, literal_a, literal_b, mode_a, mode_b, &mut cache);
                    }
                }
            }
        }
    }

    #[test]
    fn test_is_eq_fails() {
        // Initialize the opcode.
        let opcode = IsEq::<CurrentNetwork>::opcode();

        // Prepare the rng.
        let mut rng = TestRng::default();

        // Prepare the test.
        let modes_a = [circuit::Mode::Public, circuit::Mode::Private];
        let modes_b = [circuit::Mode::Public, circuit::Mode::Private];

        // Prepare the key cache.
        let mut cache = Default::default();

        for _ in 0..ITERATIONS {
            let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
            let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
            for literal_a in &literals_a {
                for literal_b in &literals_b {
                    if literal_a.to_type() != literal_b.to_type() {
                        for mode_a in &modes_a {
                            for mode_b in &modes_b {
                                // Check the operation fails.
                                check_is_fails(opcode, literal_a, literal_b, mode_a, mode_b, &mut cache);
                            }
                        }
                    }
                }
            }
        }
    }

    #[test]
    fn test_is_neq_succeeds() {
        // Initialize the operation.
        let operation = |operands, destination| IsNeq::<CurrentNetwork> { operands, destination };
        // Initialize the opcode.
        let opcode = IsNeq::<CurrentNetwork>::opcode();

        // Prepare the rng.
        let mut rng = TestRng::default();

        // Prepare the test.
        let modes_a = [circuit::Mode::Public, circuit::Mode::Private];
        let modes_b = [circuit::Mode::Public, circuit::Mode::Private];

        // Prepare the key cache.
        let mut cache = Default::default();

        for _ in 0..ITERATIONS {
            let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
            let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
            for (literal_a, literal_b) in literals_a.iter().zip_eq(literals_b.iter()) {
                for mode_a in &modes_a {
                    for mode_b in &modes_b {
                        // Check the operation.
                        check_is(operation, opcode, literal_a, literal_b, mode_a, mode_b, &mut cache);
                    }
                }
            }
        }
    }

    #[test]
    fn test_is_neq_fails() {
        // Initialize the opcode.
        let opcode = IsNeq::<CurrentNetwork>::opcode();

        // Prepare the rng.
        let mut rng = TestRng::default();

        // Prepare the test.
        let modes_a = [circuit::Mode::Public, circuit::Mode::Private];
        let modes_b = [circuit::Mode::Public, circuit::Mode::Private];

        // Prepare the key cache.
        let mut cache = Default::default();

        for _ in 0..ITERATIONS {
            let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
            let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
            for literal_a in &literals_a {
                for literal_b in &literals_b {
                    if literal_a.to_type() != literal_b.to_type() {
                        for mode_a in &modes_a {
                            for mode_b in &modes_b {
                                // Check the operation fails.
                                check_is_fails(opcode, literal_a, literal_b, mode_a, mode_b, &mut cache);
                            }
                        }
                    }
                }
            }
        }
    }

    #[test]
    fn test_parse() {
        let (string, is) = IsEq::<CurrentNetwork>::parse("is.eq r0 r1 into r2").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(is.operands.len(), 2, "The number of operands is incorrect");
        assert_eq!(is.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(is.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
        assert_eq!(is.destination, Register::Locator(2), "The destination register is incorrect");

        let (string, is) = IsNeq::<CurrentNetwork>::parse("is.neq r0 r1 into r2").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(is.operands.len(), 2, "The number of operands is incorrect");
        assert_eq!(is.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(is.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
        assert_eq!(is.destination, Register::Locator(2), "The destination register is incorrect");
    }
}