1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{
CallStack,
Opcode,
Operand,
Registers,
RegistersCall,
RegistersCaller,
RegistersCallerCircuit,
RegistersLoad,
RegistersLoadCircuit,
RegistersStore,
RegistersStoreCircuit,
StackEvaluate,
StackExecute,
StackMatches,
StackProgram,
};
use console::{
network::prelude::*,
program::{Identifier, Locator, Register, RegisterType, Request, ValueType},
};
/// The operator references a function name or closure name.
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum CallOperator<N: Network> {
/// The reference to a non-local function or closure.
Locator(Locator<N>),
/// The reference to a local function or closure.
Resource(Identifier<N>),
}
impl<N: Network> Parser for CallOperator<N> {
/// Parses a string into an operator.
#[inline]
fn parse(string: &str) -> ParserResult<Self> {
alt((map(Locator::parse, CallOperator::Locator), map(Identifier::parse, CallOperator::Resource)))(string)
}
}
impl<N: Network> FromStr for CallOperator<N> {
type Err = Error;
/// Parses a string into an operator.
#[inline]
fn from_str(string: &str) -> Result<Self> {
match Self::parse(string) {
Ok((remainder, object)) => {
// Ensure the remainder is empty.
ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
// Return the object.
Ok(object)
}
Err(error) => bail!("Failed to parse string. {error}"),
}
}
}
impl<N: Network> Debug for CallOperator<N> {
/// Prints the operator as a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Display::fmt(self, f)
}
}
impl<N: Network> Display for CallOperator<N> {
/// Prints the operator to a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
CallOperator::Locator(locator) => Display::fmt(locator, f),
CallOperator::Resource(resource) => Display::fmt(resource, f),
}
}
}
impl<N: Network> FromBytes for CallOperator<N> {
/// Reads the operation from a buffer.
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
// Read the variant.
let variant = u8::read_le(&mut reader)?;
// Match the variant.
match variant {
0 => Ok(CallOperator::Locator(Locator::read_le(&mut reader)?)),
1 => Ok(CallOperator::Resource(Identifier::read_le(&mut reader)?)),
_ => Err(error("Failed to read CallOperator. Invalid variant.")),
}
}
}
impl<N: Network> ToBytes for CallOperator<N> {
/// Writes the operation to a buffer.
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
match self {
CallOperator::Locator(locator) => {
// Write the variant.
0u8.write_le(&mut writer)?;
// Write the locator.
locator.write_le(&mut writer)
}
CallOperator::Resource(resource) => {
// Write the variant.
1u8.write_le(&mut writer)?;
// Write the resource.
resource.write_le(&mut writer)
}
}
}
}
/// Calls the operands into the declared type.
/// i.e. `call transfer r0.owner 0u64 r1.amount into r1 r2;`
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Call<N: Network> {
/// The reference.
operator: CallOperator<N>,
/// The operands.
operands: Vec<Operand<N>>,
/// The destination registers.
destinations: Vec<Register<N>>,
}
impl<N: Network> Call<N> {
/// Returns the opcode.
#[inline]
pub const fn opcode() -> Opcode {
Opcode::Call
}
/// Return the operator.
#[inline]
pub const fn operator(&self) -> &CallOperator<N> {
&self.operator
}
/// Returns the operands in the operation.
#[inline]
pub fn operands(&self) -> &[Operand<N>] {
&self.operands
}
/// Returns the destination registers.
#[inline]
pub fn destinations(&self) -> Vec<Register<N>> {
self.destinations.clone()
}
}
impl<N: Network> Call<N> {
/// Returns `true` if the instruction is a function call.
#[inline]
pub fn is_function_call(&self, stack: &impl StackProgram<N>) -> Result<bool> {
match self.operator() {
// Check if the locator is for a function.
CallOperator::Locator(locator) => {
// Retrieve the program.
let program = stack.get_external_program(locator.program_id())?;
// Check if the resource is a function.
Ok(program.contains_function(locator.resource()))
}
// Check if the resource is a function.
CallOperator::Resource(resource) => Ok(stack.program().contains_function(resource)),
}
}
/// Evaluates the instruction.
#[inline]
pub fn evaluate<A: circuit::Aleo<Network = N>>(
&self,
stack: &(impl StackEvaluate<N> + StackMatches<N> + StackProgram<N>),
registers: &mut Registers<N, A>,
) -> Result<()> {
// Load the operands values.
let inputs: Vec<_> = self.operands.iter().map(|operand| registers.load(stack, operand)).try_collect()?;
// Retrieve the substack and resource.
let (substack, resource) = match &self.operator {
// Retrieve the call stack and resource from the locator.
CallOperator::Locator(locator) => {
(stack.get_external_stack(locator.program_id())?.clone(), locator.resource())
}
CallOperator::Resource(resource) => {
// TODO (howardwu): Revisit this decision to forbid calling internal functions. A record cannot be spent again.
// But there are legitimate uses for passing a record through to an internal function.
// We could invoke the internal function without a state transition, but need to match visibility.
if stack.program().contains_function(resource) {
bail!("Cannot call '{resource}'. Use a closure ('closure {resource}:') instead.")
}
(stack.clone(), resource)
}
};
// If the operator is a closure, retrieve the closure and compute the output.
let outputs = if let Ok(closure) = substack.program().get_closure(resource) {
// Ensure the number of inputs matches the number of input statements.
if closure.inputs().len() != inputs.len() {
bail!("Expected {} inputs, found {}", closure.inputs().len(), inputs.len())
}
// Evaluate the closure, and load the outputs.
substack.evaluate_closure::<A>(
&closure,
&inputs,
registers.call_stack(),
registers.caller()?,
registers.tvk()?,
)?
}
// If the operator is a function, retrieve the function and compute the output.
else if let Ok(function) = substack.program().get_function(resource) {
// Ensure the number of inputs matches the number of input statements.
if function.inputs().len() != inputs.len() {
bail!("Expected {} inputs, found {}", function.inputs().len(), inputs.len())
}
// Evaluate the function.
let response = substack.evaluate_function::<A>(registers.call_stack())?;
// Load the outputs.
response.outputs().to_vec()
}
// Else, throw an error.
else {
bail!("Call operator '{}' is invalid or unsupported.", self.operator)
};
// Assign the outputs to the destination registers.
for (output, register) in outputs.into_iter().zip_eq(&self.destinations) {
// Assign the output to the register.
registers.store(stack, register, output)?;
}
Ok(())
}
/// Executes the instruction.
#[inline]
pub fn execute<A: circuit::Aleo<Network = N>>(
&self,
stack: &(impl StackEvaluate<N> + StackExecute<N> + StackMatches<N> + StackProgram<N>),
registers: &mut (
impl RegistersCall<N>
+ RegistersCallerCircuit<N, A>
+ RegistersLoadCircuit<N, A>
+ RegistersStoreCircuit<N, A>
),
) -> Result<()> {
// Load the operands values.
let inputs: Vec<_> =
self.operands.iter().map(|operand| registers.load_circuit(stack, operand)).try_collect()?;
// Retrieve the substack and resource.
let (substack, resource) = match &self.operator {
// Retrieve the call stack and resource from the locator.
CallOperator::Locator(locator) => {
(stack.get_external_stack(locator.program_id())?.clone(), locator.resource())
}
CallOperator::Resource(resource) => {
// TODO (howardwu): Revisit this decision to forbid calling internal functions. A record cannot be spent again.
// But there are legitimate uses for passing a record through to an internal function.
// We could invoke the internal function without a state transition, but need to match visibility.
if stack.program().contains_function(resource) {
bail!("Cannot call '{resource}'. Use a closure ('closure {resource}:') instead.")
}
(stack.clone(), resource)
}
};
// If the operator is a closure, retrieve the closure and compute the output.
let outputs = if let Ok(closure) = substack.program().get_closure(resource) {
// Execute the closure, and load the outputs.
substack.execute_closure(
&closure,
&inputs,
registers.call_stack(),
registers.caller_circuit()?,
registers.tvk_circuit()?,
)?
}
// If the operator is a function, retrieve the function and compute the output.
else if let Ok(function) = substack.program().get_function(resource) {
// Retrieve the number of inputs.
let num_inputs = function.inputs().len();
// Ensure the number of inputs matches the number of input statements.
if num_inputs != inputs.len() {
bail!("Expected {} inputs, found {}", num_inputs, inputs.len())
}
// Retrieve the number of public variables in the circuit.
let num_public = A::num_public();
use circuit::Eject;
// Eject the existing circuit.
let r1cs = A::eject_r1cs_and_reset();
let (request, response) = {
// Eject the circuit inputs.
let inputs = inputs.eject_value();
// Initialize an RNG.
let rng = &mut rand::thread_rng();
match registers.call_stack() {
// If the circuit is in authorize or synthesize mode, then add any external calls to the stack.
CallStack::Authorize(_, private_key, authorization)
| CallStack::Synthesize(_, private_key, authorization) => {
// Compute the request.
let request = Request::sign(
&private_key,
*substack.program_id(),
*function.name(),
inputs.iter(),
&function.input_types(),
rng,
)?;
// Retrieve the call stack.
let mut call_stack = registers.call_stack();
// Push the request onto the call stack.
call_stack.push(request.clone())?;
// Add the request to the authorization.
authorization.push(request.clone());
// Execute the request.
let response = substack.execute_function::<A, _>(call_stack, rng)?;
// Return the request and response.
(request, response)
}
CallStack::CheckDeployment(_, private_key, ..) => {
// Compute the request.
let request = Request::sign(
&private_key,
*substack.program_id(),
*function.name(),
inputs.iter(),
&function.input_types(),
rng,
)?;
// Retrieve the call stack.
let mut call_stack = registers.call_stack();
// Push the request onto the call stack.
call_stack.push(request.clone())?;
// Execute the request.
let response = substack.execute_function::<A, _>(call_stack, rng)?;
// Return the request and response.
(request, response)
}
// If the circuit is in evaluate mode, then throw an error.
CallStack::Evaluate(..) => {
bail!("Cannot 'execute' a function in 'evaluate' mode.")
}
// If the circuit is in execute mode, then evaluate and execute the instructions.
CallStack::Execute(authorization, ..) => {
// Retrieve the next request (without popping it).
let request = authorization.peek_next()?;
// Ensure the inputs match the original inputs.
request.inputs().iter().zip_eq(&inputs).try_for_each(|(request_input, input)| {
ensure!(request_input == input, "Inputs do not match in a 'call' instruction.");
Ok(())
})?;
// Evaluate the function, and load the outputs.
let console_response = substack.evaluate_function::<A>(registers.call_stack().replicate())?;
// Execute the request.
let response = substack.execute_function::<A, _>(registers.call_stack(), rng)?;
// Ensure the values are equal.
if console_response.outputs() != response.outputs() {
#[cfg(debug_assertions)]
eprintln!("\n{:#?} != {:#?}\n", console_response.outputs(), response.outputs());
bail!("Function '{}' outputs do not match in a 'call' instruction.", function.name())
}
// Return the request and response.
(request, response)
}
}
};
// Inject the existing circuit.
A::inject_r1cs(r1cs);
use circuit::Inject;
// Inject the network ID as `Mode::Constant`.
let network_id = circuit::U16::constant(*request.network_id());
// Inject the program ID as `Mode::Constant`.
let program_id = circuit::ProgramID::constant(*substack.program_id());
// Inject the function name as `Mode::Constant`.
let function_name = circuit::Identifier::constant(*function.name());
// Ensure the number of public variables remains the same.
ensure!(A::num_public() == num_public, "Forbidden: 'call' injected excess public variables");
// Inject the `caller` (from the request) as `Mode::Private`.
let caller = circuit::Address::new(circuit::Mode::Private, *request.caller());
// Inject the `sk_tag` (from the request) as `Mode::Private`.
let sk_tag = circuit::Field::new(circuit::Mode::Private, *request.sk_tag());
// Inject the `tvk` (from the request) as `Mode::Private`.
let tvk = circuit::Field::new(circuit::Mode::Private, *request.tvk());
// Inject the `tcm` (from the request) as `Mode::Private`.
let tcm = circuit::Field::new(circuit::Mode::Private, *request.tcm());
// Inject the input IDs (from the request) as `Mode::Public`.
let input_ids = request
.input_ids()
.iter()
.map(|input_id| circuit::InputID::new(circuit::Mode::Public, *input_id))
.collect::<Vec<_>>();
// Ensure the candidate input IDs match their computed inputs.
let (check_input_ids, _) = circuit::Request::check_input_ids::<false>(
&network_id,
&program_id,
&function_name,
&input_ids,
&inputs,
&function.input_types(),
&caller,
&sk_tag,
&tvk,
&tcm,
None,
);
A::assert(check_input_ids);
// Inject the outputs as `Mode::Private` (with the output IDs as `Mode::Public`).
let outputs = circuit::Response::process_outputs_from_callback(
&network_id,
&program_id,
&function_name,
num_inputs,
&tvk,
&tcm,
response.outputs().to_vec(),
&function.output_types(),
);
// Return the circuit outputs.
outputs
}
// Else, throw an error.
else {
bail!("Call operator '{}' is invalid or unsupported.", self.operator)
};
// Assign the outputs to the destination registers.
for (output, register) in outputs.into_iter().zip_eq(&self.destinations) {
// Assign the output to the register.
registers.store_circuit(stack, register, output)?;
}
Ok(())
}
/// Finalizes the instruction.
#[inline]
pub fn finalize(
&self,
_stack: &(impl StackMatches<N> + StackProgram<N>),
_registers: &mut impl RegistersLoad<N>,
) -> Result<()> {
bail!("Forbidden operation: Finalize cannot invoke a 'call'")
}
/// Returns the output type from the given program and input types.
#[inline]
pub fn output_types(
&self,
stack: &impl StackProgram<N>,
input_types: &[RegisterType<N>],
) -> Result<Vec<RegisterType<N>>> {
// Retrieve the program and resource.
let (is_external, program, resource) = match &self.operator {
// Retrieve the program and resource from the locator.
CallOperator::Locator(locator) => {
(true, stack.get_external_program(locator.program_id())?, locator.resource())
}
CallOperator::Resource(resource) => {
// TODO (howardwu): Revisit this decision to forbid calling internal functions. A record cannot be spent again.
// But there are legitimate uses for passing a record through to an internal function.
// We could invoke the internal function without a state transition, but need to match visibility.
if stack.program().contains_function(resource) {
bail!("Cannot call '{resource}'. Use a closure ('closure {resource}:') instead.")
}
(false, stack.program(), resource)
}
};
// If the operator is a closure, retrieve the closure and compute the output types.
if let Ok(closure) = program.get_closure(resource) {
// Ensure the number of operands matches the number of input statements.
if closure.inputs().len() != self.operands.len() {
bail!("Expected {} inputs, found {}", closure.inputs().len(), self.operands.len())
}
// Ensure the number of inputs matches the number of input statements.
if closure.inputs().len() != input_types.len() {
bail!("Expected {} input types, found {}", closure.inputs().len(), input_types.len())
}
// Ensure the number of destinations matches the number of output statements.
if closure.outputs().len() != self.destinations.len() {
bail!("Expected {} outputs, found {}", closure.outputs().len(), self.destinations.len())
}
// Return the output register types.
Ok(closure.outputs().iter().map(|output| *output.register_type()).collect())
}
// If the operator is a function, retrieve the function and compute the output types.
else if let Ok(function) = program.get_function(resource) {
// Ensure the number of operands matches the number of input statements.
if function.inputs().len() != self.operands.len() {
bail!("Expected {} inputs, found {}", function.inputs().len(), self.operands.len())
}
// Ensure the number of inputs matches the number of input statements.
if function.inputs().len() != input_types.len() {
bail!("Expected {} input types, found {}", function.inputs().len(), input_types.len())
}
// Ensure the number of destinations matches the number of output statements.
if function.outputs().len() != self.destinations.len() {
bail!("Expected {} outputs, found {}", function.outputs().len(), self.destinations.len())
}
// Return the output register types.
function
.output_types()
.into_iter()
.map(|output_type| match (is_external, output_type) {
// If the output is a record and the function is external, return the external record type.
(true, ValueType::Record(record_name)) => Ok(RegisterType::ExternalRecord(Locator::from_str(
&format!("{}/{}", program.id(), record_name),
)?)),
// Else, return the register type.
(_, _) => Ok(RegisterType::from(output_type)),
})
.collect::<Result<Vec<_>>>()
}
// Else, throw an error.
else {
bail!("Call operator '{}' is invalid or unsupported.", self.operator)
}
}
}
impl<N: Network> Parser for Call<N> {
/// Parses a string into an operation.
#[inline]
fn parse(string: &str) -> ParserResult<Self> {
/// Parses an operand from the string.
fn parse_operand<N: Network>(string: &str) -> ParserResult<Operand<N>> {
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the operand from the string.
Operand::parse(string)
}
/// Parses a destination register from the string.
fn parse_destination<N: Network>(string: &str) -> ParserResult<Register<N>> {
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the destination from the string.
Register::parse(string)
}
// Parse the opcode from the string.
let (string, _) = tag(*Self::opcode())(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the name of the call from the string.
let (string, operator) = CallOperator::parse(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the operands from the string.
let (string, operands) = map_res(many0(complete(parse_operand)), |operands: Vec<Operand<N>>| {
// Ensure the number of operands is within the bounds.
match operands.len() <= N::MAX_OPERANDS {
true => Ok(operands),
false => Err(error("Failed to parse 'call' opcode: too many operands")),
}
})(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Optionally parse the "into" from the string.
let (string, destinations) = match opt(tag("into"))(string)? {
// If the "into" was not parsed, return the string and an empty vector of destinations.
(string, None) => (string, vec![]),
// If the "into" was parsed, parse the destinations from the string.
(string, Some(_)) => {
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the destinations from the string.
let (string, destinations) =
map_res(many0(complete(parse_destination)), |destinations: Vec<Register<N>>| {
// Ensure the number of destinations is within the bounds.
match destinations.len() <= N::MAX_OPERANDS {
true => Ok(destinations),
false => Err(error("Failed to parse 'call' opcode: too many destinations")),
}
})(string)?;
// Return the string and the destinations.
(string, destinations)
}
};
Ok((string, Self { operator, operands, destinations }))
}
}
impl<N: Network> FromStr for Call<N> {
type Err = Error;
/// Parses a string into an operation.
#[inline]
fn from_str(string: &str) -> Result<Self> {
match Self::parse(string) {
Ok((remainder, object)) => {
// Ensure the remainder is empty.
ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
// Return the object.
Ok(object)
}
Err(error) => bail!("Failed to parse string. {error}"),
}
}
}
impl<N: Network> Debug for Call<N> {
/// Prints the operation as a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Display::fmt(self, f)
}
}
impl<N: Network> Display for Call<N> {
/// Prints the operation to a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
// Ensure the number of operands is within the bounds.
if self.operands.len() > N::MAX_OPERANDS {
eprintln!("The number of operands must be <= {}", N::MAX_OPERANDS);
return Err(fmt::Error);
}
// Ensure the number of destinations is within the bounds.
if self.destinations.len() > N::MAX_OPERANDS {
eprintln!("The number of destinations must be <= {}", N::MAX_OPERANDS);
return Err(fmt::Error);
}
// Print the operation.
write!(f, "{} {}", Self::opcode(), self.operator)?;
self.operands.iter().try_for_each(|operand| write!(f, " {operand}"))?;
if !self.destinations.is_empty() {
write!(f, " into")?;
self.destinations.iter().try_for_each(|destination| write!(f, " {destination}"))?;
}
Ok(())
}
}
impl<N: Network> FromBytes for Call<N> {
/// Reads the operation from a buffer.
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
// Read the operator of the call.
let operator = CallOperator::read_le(&mut reader)?;
// Read the number of operands.
let num_operands = u8::read_le(&mut reader)? as usize;
// Ensure the number of operands is within the bounds.
if num_operands > N::MAX_OPERANDS {
return Err(error(format!("The number of operands must be <= {}", N::MAX_OPERANDS)));
}
// Initialize the vector for the operands.
let mut operands = Vec::with_capacity(num_operands);
// Read the operands.
for _ in 0..num_operands {
operands.push(Operand::read_le(&mut reader)?);
}
// Read the number of destination registers.
let num_destinations = u8::read_le(&mut reader)? as usize;
// Ensure the number of destinations is within the bounds.
if num_destinations > N::MAX_OPERANDS {
return Err(error(format!("The number of destinations must be <= {}", N::MAX_OPERANDS)));
}
// Initialize the vector for the destinations.
let mut destinations = Vec::with_capacity(num_destinations);
// Read the destination registers.
for _ in 0..num_destinations {
destinations.push(Register::read_le(&mut reader)?);
}
// Return the operation.
Ok(Self { operator, operands, destinations })
}
}
impl<N: Network> ToBytes for Call<N> {
/// Writes the operation to a buffer.
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
// Ensure the number of operands is within the bounds.
if self.operands.len() > N::MAX_OPERANDS {
return Err(error(format!("The number of operands must be <= {}", N::MAX_OPERANDS)));
}
// Ensure the number of destinations is within the bounds.
if self.destinations.len() > N::MAX_OPERANDS {
return Err(error(format!("The number of destinations must be <= {}", N::MAX_OPERANDS)));
}
// Write the name of the call.
self.operator.write_le(&mut writer)?;
// Write the number of operands.
(self.operands.len() as u8).write_le(&mut writer)?;
// Write the operands.
self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
// Write the number of destination register.
(self.destinations.len() as u8).write_le(&mut writer)?;
// Write the destination registers.
self.destinations.iter().try_for_each(|destination| destination.write_le(&mut writer))
}
}
#[cfg(test)]
mod tests {
use super::*;
use console::{
network::Testnet3,
program::{Address, Identifier, Literal, U64},
};
type CurrentNetwork = Testnet3;
const TEST_CASES: &[&str] = &[
"call foo",
"call foo r0",
"call foo r0.owner",
"call foo r0 r1",
"call foo into r0",
"call foo into r0 r1",
"call foo into r0 r1 r2",
"call foo r0 into r1",
"call foo r0 r1 into r2",
"call foo r0 r1 into r2 r3",
"call foo r0 r1 r2 into r3 r4",
"call foo r0 r1 r2 into r3 r4 r5",
];
fn check_parser(
string: &str,
expected_operator: CallOperator<CurrentNetwork>,
expected_operands: Vec<Operand<CurrentNetwork>>,
expected_destinations: Vec<Register<CurrentNetwork>>,
) {
// Check that the parser works.
let (string, call) = Call::<CurrentNetwork>::parse(string).unwrap();
// Check that the entire string was consumed.
assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
// Check that the operator is correct.
assert_eq!(call.operator, expected_operator, "The call operator is incorrect");
// Check that the operands are correct.
assert_eq!(call.operands.len(), expected_operands.len(), "The number of operands is incorrect");
for (i, (given, expected)) in call.operands.iter().zip(expected_operands.iter()).enumerate() {
assert_eq!(given, expected, "The {i}-th operand is incorrect");
}
// Check that the destinations are correct.
assert_eq!(call.destinations.len(), expected_destinations.len(), "The number of destinations is incorrect");
for (i, (given, expected)) in call.destinations.iter().zip(expected_destinations.iter()).enumerate() {
assert_eq!(given, expected, "The {i}-th destination is incorrect");
}
}
#[test]
fn test_parse() {
check_parser(
"call transfer r0.owner r0.token_amount into r1 r2 r3",
CallOperator::from_str("transfer").unwrap(),
vec![
Operand::Register(Register::Member(0, vec![Identifier::from_str("owner").unwrap()])),
Operand::Register(Register::Member(0, vec![Identifier::from_str("token_amount").unwrap()])),
],
vec![Register::Locator(1), Register::Locator(2), Register::Locator(3)],
);
check_parser(
"call mint_public aleo1wfyyj2uvwuqw0c0dqa5x70wrawnlkkvuepn4y08xyaqfqqwweqys39jayw 100u64",
CallOperator::from_str("mint_public").unwrap(),
vec![
Operand::Literal(Literal::Address(
Address::from_str("aleo1wfyyj2uvwuqw0c0dqa5x70wrawnlkkvuepn4y08xyaqfqqwweqys39jayw").unwrap(),
)),
Operand::Literal(Literal::U64(U64::from_str("100u64").unwrap())),
],
vec![],
);
check_parser(
"call get_magic_number into r0",
CallOperator::from_str("get_magic_number").unwrap(),
vec![],
vec![Register::Locator(0)],
);
check_parser("call noop", CallOperator::from_str("noop").unwrap(), vec![], vec![])
}
#[test]
fn test_display() {
for expected in TEST_CASES {
assert_eq!(Call::<CurrentNetwork>::from_str(expected).unwrap().to_string(), *expected);
}
}
#[test]
fn test_bytes() {
for case in TEST_CASES {
let expected = Call::<CurrentNetwork>::from_str(case).unwrap();
// Check the byte representation.
let expected_bytes = expected.to_bytes_le().unwrap();
assert_eq!(expected, Call::read_le(&expected_bytes[..]).unwrap());
assert!(Call::<CurrentNetwork>::read_le(&expected_bytes[1..]).is_err());
}
}
}