1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    Opcode,
    Operand,
    RegistersLoad,
    RegistersLoadCircuit,
    RegistersStore,
    RegistersStoreCircuit,
    StackMatches,
    StackProgram,
};
use console::{
    network::prelude::*,
    program::{Literal, LiteralType, Plaintext, PlaintextType, Register, RegisterType, Value},
};

/// BHP256 is a collision-resistant function that processes inputs in 256-bit chunks.
pub type CommitBHP256<N> = CommitInstruction<N, { Committer::BHP256 as u8 }>;
/// BHP512 is a collision-resistant function that processes inputs in 512-bit chunks.
pub type CommitBHP512<N> = CommitInstruction<N, { Committer::BHP512 as u8 }>;
/// BHP768 is a collision-resistant function that processes inputs in 768-bit chunks.
pub type CommitBHP768<N> = CommitInstruction<N, { Committer::BHP768 as u8 }>;
/// BHP1024 is a collision-resistant function that processes inputs in 1024-bit chunks.
pub type CommitBHP1024<N> = CommitInstruction<N, { Committer::BHP1024 as u8 }>;

/// Pedersen64 is a collision-resistant function that processes inputs in 64-bit chunks.
pub type CommitPED64<N> = CommitInstruction<N, { Committer::PED64 as u8 }>;
/// Pedersen128 is a collision-resistant function that processes inputs in 128-bit chunks.
pub type CommitPED128<N> = CommitInstruction<N, { Committer::PED128 as u8 }>;

enum Committer {
    BHP256,
    BHP512,
    BHP768,
    BHP1024,
    PED64,
    PED128,
}

/// Commits the operand into the declared type.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct CommitInstruction<N: Network, const VARIANT: u8> {
    /// The operand as `input`.
    operands: Vec<Operand<N>>,
    /// The destination register.
    destination: Register<N>,
}

impl<N: Network, const VARIANT: u8> CommitInstruction<N, VARIANT> {
    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        match VARIANT {
            0 => Opcode::Commit("commit.bhp256"),
            1 => Opcode::Commit("commit.bhp512"),
            2 => Opcode::Commit("commit.bhp768"),
            3 => Opcode::Commit("commit.bhp1024"),
            4 => Opcode::Commit("commit.ped64"),
            5 => Opcode::Commit("commit.ped128"),
            _ => panic!("Invalid 'commit' instruction opcode"),
        }
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> &[Operand<N>] {
        // Sanity check that the operands is exactly two inputs.
        debug_assert!(self.operands.len() == 2, "Commit operations must have two operands");
        // Return the operands.
        &self.operands
    }

    /// Returns the destination register.
    #[inline]
    pub fn destinations(&self) -> Vec<Register<N>> {
        vec![self.destination.clone()]
    }
}

impl<N: Network, const VARIANT: u8> CommitInstruction<N, VARIANT> {
    /// Evaluates the instruction.
    #[inline]
    pub fn evaluate(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Retrieve the input and randomizer.
        let input = registers.load(stack, &self.operands[0])?;
        let randomizer = registers.load(stack, &self.operands[1])?;
        // Retrieve the randomizer.
        let randomizer = match randomizer {
            Value::Plaintext(Plaintext::Literal(Literal::Scalar(randomizer), ..)) => randomizer,
            _ => bail!("Invalid randomizer type for the commit evaluation, expected a scalar"),
        };

        // Commit the input.
        let output = match VARIANT {
            0 => Literal::Field(N::commit_bhp256(&input.to_bits_le(), &randomizer)?),
            1 => Literal::Field(N::commit_bhp512(&input.to_bits_le(), &randomizer)?),
            2 => Literal::Field(N::commit_bhp768(&input.to_bits_le(), &randomizer)?),
            3 => Literal::Field(N::commit_bhp1024(&input.to_bits_le(), &randomizer)?),
            4 => Literal::Group(N::commit_ped64(&input.to_bits_le(), &randomizer)?),
            5 => Literal::Group(N::commit_ped128(&input.to_bits_le(), &randomizer)?),
            _ => bail!("Invalid 'commit' variant: {VARIANT}"),
        };
        // Store the output.
        registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(output)))
    }

    /// Executes the instruction.
    #[inline]
    pub fn execute<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
    ) -> Result<()> {
        use circuit::ToBits;

        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Retrieve the input and randomizer.
        let input = registers.load_circuit(stack, &self.operands[0])?;
        let randomizer = registers.load_circuit(stack, &self.operands[1])?;
        // Retrieve the randomizer.
        let randomizer = match randomizer {
            circuit::Value::Plaintext(circuit::Plaintext::Literal(circuit::Literal::Scalar(randomizer), ..)) => {
                randomizer
            }
            _ => bail!("Invalid randomizer type for the commit execution, expected a scalar"),
        };

        // Commits the input.
        let output = match VARIANT {
            0 => circuit::Literal::Field(A::commit_bhp256(&input.to_bits_le(), &randomizer)),
            1 => circuit::Literal::Field(A::commit_bhp512(&input.to_bits_le(), &randomizer)),
            2 => circuit::Literal::Field(A::commit_bhp768(&input.to_bits_le(), &randomizer)),
            3 => circuit::Literal::Field(A::commit_bhp1024(&input.to_bits_le(), &randomizer)),
            4 => circuit::Literal::Group(A::commit_ped64(&input.to_bits_le(), &randomizer)),
            5 => circuit::Literal::Group(A::commit_ped128(&input.to_bits_le(), &randomizer)),
            _ => bail!("Invalid 'commit' variant: {VARIANT}"),
        };
        // Convert the output to a stack value.
        let output = circuit::Value::Plaintext(circuit::Plaintext::Literal(output, Default::default()));
        // Store the output.
        registers.store_circuit(stack, &self.destination, output)
    }

    /// Finalizes the instruction.
    #[inline]
    pub fn finalize(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        self.evaluate(stack, registers)
    }

    /// Returns the output type from the given program and input types.
    #[inline]
    pub fn output_types(
        &self,
        _stack: &impl StackProgram<N>,
        input_types: &[RegisterType<N>],
    ) -> Result<Vec<RegisterType<N>>> {
        // Ensure the number of input types is correct.
        if input_types.len() != 2 {
            bail!("Instruction '{}' expects 2 inputs, found {} inputs", Self::opcode(), input_types.len())
        }
        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // TODO (howardwu): If the operation is Pedersen, check that it is within the number of bits.

        match VARIANT {
            0 | 1 | 2 | 3 => Ok(vec![RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Field))]),
            4 | 5 => Ok(vec![RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Group))]),
            _ => bail!("Invalid 'commit' variant: {VARIANT}"),
        }
    }
}

impl<N: Network, const VARIANT: u8> Parser for CommitInstruction<N, VARIANT> {
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        // Parse the opcode from the string.
        let (string, _) = tag(*Self::opcode())(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the first operand from the string.
        let (string, first) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the second operand from the string.
        let (string, second) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "into" from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;

        Ok((string, Self { operands: vec![first, second], destination }))
    }
}

impl<N: Network, const VARIANT: u8> FromStr for CommitInstruction<N, VARIANT> {
    type Err = Error;

    /// Parses a string into an operation.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network, const VARIANT: u8> Debug for CommitInstruction<N, VARIANT> {
    /// Prints the operation as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network, const VARIANT: u8> Display for CommitInstruction<N, VARIANT> {
    /// Prints the operation to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Ensure the number of operands is 2.
        if self.operands.len() != 2 {
            eprintln!("The number of operands must be 2, found {}", self.operands.len());
            return Err(fmt::Error);
        }
        // Print the operation.
        write!(f, "{} ", Self::opcode())?;
        self.operands.iter().try_for_each(|operand| write!(f, "{operand} "))?;
        write!(f, "into {}", self.destination)
    }
}

impl<N: Network, const VARIANT: u8> FromBytes for CommitInstruction<N, VARIANT> {
    /// Reads the operation from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Initialize the vector for the operands.
        let mut operands = Vec::with_capacity(2);
        // Read the operands.
        for _ in 0..2 {
            operands.push(Operand::read_le(&mut reader)?);
        }
        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;

        // Return the operation.
        Ok(Self { operands, destination })
    }
}

impl<N: Network, const VARIANT: u8> ToBytes for CommitInstruction<N, VARIANT> {
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Ensure the number of operands is 2.
        if self.operands.len() != 2 {
            return Err(error(format!("The number of operands must be 2, found {}", self.operands.len())));
        }
        // Write the operands.
        self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
        // Write the destination register.
        self.destination.write_le(&mut writer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        process::Stack,
        program::test_helpers::{sample_finalize_registers, sample_registers},
    };
    use circuit::{AleoV0, Eject};
    use console::{network::Testnet3, program::Identifier};
    use snarkvm_synthesizer_snark::{ProvingKey, VerifyingKey};

    use std::collections::HashMap;

    type CurrentNetwork = Testnet3;
    type CurrentAleo = AleoV0;

    const ITERATIONS: usize = 100;

    /// Samples the stack. Note: Do not replicate this for real program use, it is insecure.
    #[allow(clippy::type_complexity)]
    fn sample_stack(
        opcode: Opcode,
        type_a: LiteralType,
        type_b: LiteralType,
        mode_a: circuit::Mode,
        mode_b: circuit::Mode,
        cache: &mut HashMap<String, (ProvingKey<CurrentNetwork>, VerifyingKey<CurrentNetwork>)>,
    ) -> Result<(Stack<CurrentNetwork>, Vec<Operand<CurrentNetwork>>, Register<CurrentNetwork>)> {
        use crate::{Process, Program};

        // Initialize the opcode.
        let opcode = opcode.to_string();

        // Initialize the function name.
        let function_name = Identifier::<CurrentNetwork>::from_str("run")?;

        // Initialize the registers.
        let r0 = Register::Locator(0);
        let r1 = Register::Locator(1);
        let r2 = Register::Locator(2);

        // Initialize the program.
        let program = Program::from_str(&format!(
            "program testing.aleo;
            function {function_name}:
                input {r0} as {type_a}.{mode_a};
                input {r1} as {type_b}.{mode_b};
                {opcode} {r0} {r1} into {r2};
                finalize {r0} {r1};

            finalize {function_name}:
                input {r0} as {type_a}.public;
                input {r1} as {type_b}.public;
                {opcode} {r0} {r1} into {r2};
        "
        ))?;

        // Initialize the operands.
        let operand_a = Operand::Register(r0);
        let operand_b = Operand::Register(r1);
        let operands = vec![operand_a, operand_b];

        // Initialize the stack.
        let stack = Stack::new(&Process::load_with_cache(cache)?, &program)?;

        Ok((stack, operands, r2))
    }

    fn check_commit<const VARIANT: u8>(
        operation: impl FnOnce(
            Vec<Operand<CurrentNetwork>>,
            Register<CurrentNetwork>,
        ) -> CommitInstruction<CurrentNetwork, VARIANT>,
        opcode: Opcode,
        literal_a: &Literal<CurrentNetwork>,
        literal_b: &Literal<CurrentNetwork>,
        mode_a: &circuit::Mode,
        mode_b: &circuit::Mode,
        cache: &mut HashMap<String, (ProvingKey<CurrentNetwork>, VerifyingKey<CurrentNetwork>)>,
    ) {
        println!("Checking '{opcode}' for '{literal_a}.{mode_a}' and '{literal_b}.{mode_b}'");

        // Initialize the types.
        let type_a = literal_a.to_type();
        let type_b = literal_b.to_type();

        // Initialize the stack.
        let (stack, operands, destination) = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b, cache).unwrap();
        // Initialize the operation.
        let operation = operation(operands, destination.clone());
        // Initialize the function name.
        let function_name = Identifier::from_str("run").unwrap();
        // Initialize a destination operand.
        let destination_operand = Operand::Register(destination);

        // Attempt to evaluate the valid operand case.
        let values = [(literal_a, None), (literal_b, None)];
        let mut evaluate_registers = sample_registers(&stack, &function_name, &values).unwrap();
        let result_a = operation.evaluate(&stack, &mut evaluate_registers);

        // Attempt to execute the valid operand case.
        let values = [(literal_a, Some(*mode_a)), (literal_b, Some(*mode_b))];
        let mut execute_registers = sample_registers(&stack, &function_name, &values).unwrap();
        let result_b = operation.execute::<CurrentAleo>(&stack, &mut execute_registers);

        // Attempt to finalize the valid operand case.
        let mut finalize_registers =
            sample_finalize_registers(&stack, &function_name, &[literal_a, literal_b]).unwrap();
        let result_c = operation.finalize(&stack, &mut finalize_registers);

        // Check that either all operations failed, or all operations succeeded.
        let all_failed = result_a.is_err() && result_b.is_err() && result_c.is_err();
        let all_succeeded = result_a.is_ok() && result_b.is_ok() && result_c.is_ok();
        assert!(
            all_failed || all_succeeded,
            "The results of the evaluation, execution, and finalization should either all succeed or all fail"
        );

        // If all operations succeeded, check that the outputs are consistent.
        if all_succeeded {
            // Retrieve the output of evaluation.
            let output_a = evaluate_registers.load(&stack, &destination_operand).unwrap();

            // Retrieve the output of execution.
            let output_b = execute_registers.load_circuit(&stack, &destination_operand).unwrap();

            // Retrieve the output of finalization.
            let output_c = finalize_registers.load(&stack, &destination_operand).unwrap();

            // Check that the outputs are consistent.
            assert_eq!(
                output_a,
                output_b.eject_value(),
                "The results of the evaluation and execution are inconsistent"
            );
            assert_eq!(output_a, output_c, "The results of the evaluation and finalization are inconsistent");
        }

        // Reset the circuit.
        <CurrentAleo as circuit::Environment>::reset();
    }

    macro_rules! test_commit {
        ($name: tt, $commit:ident) => {
            paste::paste! {
                #[test]
                fn [<test _ $name _ is _ consistent>]() {
                    // Initialize the operation.
                    let operation = |operands, destination| $commit::<CurrentNetwork> { operands, destination };
                    // Initialize the opcode.
                    let opcode = $commit::<CurrentNetwork>::opcode();

                    // Prepare the rng.
                    let mut rng = TestRng::default();

                   // Prepare the test.
                    let modes_a = [circuit::Mode::Public, circuit::Mode::Private];
                    let modes_b = [circuit::Mode::Public, circuit::Mode::Private];

                    // Prepare the key cache.
                    let mut cache = Default::default();

                    for _ in 0..ITERATIONS {
                        let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
                        let literals_b = vec![console::program::Literal::Scalar(console::types::Scalar::rand(&mut rng))];

                        for literal_a in &literals_a {
                            for literal_b in &literals_b {
                                for mode_a in &modes_a {
                                    for mode_b in &modes_b {
                                        check_commit(operation, opcode, literal_a, literal_b, mode_a, mode_b, &mut cache);
                                    }
                                }
                            }
                        }
                    }
                }
            }
        };
    }

    test_commit!(commit_bhp256, CommitBHP256);
    test_commit!(commit_bhp512, CommitBHP512);
    test_commit!(commit_bhp768, CommitBHP768);
    test_commit!(commit_bhp1024, CommitBHP1024);

    // Note this test must be explicitly written, instead of using the macro, because CommitPED64 fails on certain input types.
    #[test]
    fn test_hash_ped64_is_consistent() {
        // Initialize the operation.
        let operation = |operands, destination| CommitPED64::<CurrentNetwork> { operands, destination };
        // Initialize the opcode.
        let opcode = CommitPED128::<CurrentNetwork>::opcode();

        // Prepare the rng.
        let mut rng = TestRng::default();

        // Prepare the test.
        let modes_a = [circuit::Mode::Public, circuit::Mode::Private];
        let modes_b = [circuit::Mode::Public, circuit::Mode::Private];

        // Prepare the key cache.
        let mut cache = Default::default();

        for _ in 0..ITERATIONS {
            let literals_a = [
                Literal::Boolean(console::types::Boolean::rand(&mut rng)),
                Literal::I8(console::types::I8::rand(&mut rng)),
                Literal::I16(console::types::I16::rand(&mut rng)),
                Literal::I32(console::types::I32::rand(&mut rng)),
                Literal::U8(console::types::U8::rand(&mut rng)),
                Literal::U16(console::types::U16::rand(&mut rng)),
                Literal::U32(console::types::U32::rand(&mut rng)),
            ];
            let literals_b = vec![Literal::Scalar(console::types::Scalar::rand(&mut rng))];

            for literal_a in &literals_a {
                for literal_b in &literals_b {
                    for mode_a in &modes_a {
                        for mode_b in &modes_b {
                            check_commit(operation, opcode, literal_a, literal_b, mode_a, mode_b, &mut cache);
                        }
                    }
                }
            }
        }
    }

    // Note this test must be explicitly written, instead of using the macro, because CommitPED128 fails on certain input types.
    #[test]
    fn test_hash_ped128_is_consistent() {
        // Initialize the operation.
        let operation = |operands, destination| CommitPED128::<CurrentNetwork> { operands, destination };
        // Initialize the opcode.
        let opcode = CommitPED128::<CurrentNetwork>::opcode();

        // Prepare the rng.
        let mut rng = TestRng::default();

        // Prepare the test.
        let modes_a = [circuit::Mode::Public, circuit::Mode::Private];
        let modes_b = [circuit::Mode::Public, circuit::Mode::Private];

        // Prepare the key cache.
        let mut cache = Default::default();

        for _ in 0..ITERATIONS {
            let literals_a = [
                Literal::Boolean(console::types::Boolean::rand(&mut rng)),
                Literal::I8(console::types::I8::rand(&mut rng)),
                Literal::I16(console::types::I16::rand(&mut rng)),
                Literal::I32(console::types::I32::rand(&mut rng)),
                Literal::I64(console::types::I64::rand(&mut rng)),
                Literal::U8(console::types::U8::rand(&mut rng)),
                Literal::U16(console::types::U16::rand(&mut rng)),
                Literal::U32(console::types::U32::rand(&mut rng)),
                Literal::U64(console::types::U64::rand(&mut rng)),
            ];
            let literals_b = vec![Literal::Scalar(console::types::Scalar::rand(&mut rng))];

            for literal_a in &literals_a {
                for literal_b in &literals_b {
                    for mode_a in &modes_a {
                        for mode_b in &modes_b {
                            check_commit(operation, opcode, literal_a, literal_b, mode_a, mode_b, &mut cache);
                        }
                    }
                }
            }
        }
    }

    #[test]
    fn test_parse() {
        let (string, commit) = CommitBHP512::<CurrentNetwork>::parse("commit.bhp512 r0 r1 into r2").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(commit.operands.len(), 2, "The number of operands is incorrect");
        assert_eq!(commit.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(commit.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
        assert_eq!(commit.destination, Register::Locator(2), "The destination register is incorrect");
    }
}