1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{
    kzg10,
    BTreeMap,
    BTreeSet,
    BatchLCProof,
    Error,
    Evaluations,
    LabeledCommitment,
    LabeledPolynomial,
    LinearCombination,
    PCCommitterKey,
    PCRandomness,
    PCUniversalParams,
    Polynomial,
    PolynomialCommitment,
    QuerySet,
    String,
    ToOwned,
    ToString,
    Vec,
};

use snarkvm_curves::traits::{AffineCurve, Group, PairingCurve, PairingEngine, ProjectiveCurve};
use snarkvm_fields::{One, Zero};
use snarkvm_utilities::rand::UniformRand;

use core::{convert::TryInto, marker::PhantomData};
use rand_core::RngCore;

mod data_structures;
pub use data_structures::*;

/// Polynomial commitment based on [[KZG10]][kzg], with degree enforcement and
/// batching taken from [[MBKM19, “Sonic”]][sonic] (more precisely, their
/// counterparts in [[Gabizon19, “AuroraLight”]][al] that avoid negative G1 powers).
/// The (optional) hiding property of the commitment scheme follows the approach
/// described in [[CHMMVW20, “Marlin”]][marlin].
///
/// [kzg]: http://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
/// [sonic]: https://eprint.iacr.org/2019/099
/// [al]: https://eprint.iacr.org/2019/601
/// [marlin]: https://eprint.iacr.org/2019/1047
#[derive(Clone, Debug)]
pub struct SonicKZG10<E: PairingEngine> {
    _engine: PhantomData<E>,
}

impl<E: PairingEngine> SonicKZG10<E> {
    #[allow(clippy::too_many_arguments)]
    fn accumulate_elems<'a>(
        combined_comms: &mut BTreeMap<Option<usize>, E::G1Projective>,
        combined_witness: &mut E::G1Projective,
        combined_adjusted_witness: &mut E::G1Projective,
        vk: &VerifierKey<E>,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Commitment<E>>>,
        point: E::Fr,
        values: impl IntoIterator<Item = E::Fr>,
        proof: &kzg10::Proof<E>,
        opening_challenge: E::Fr,
        randomizer: Option<E::Fr>,
    ) {
        let acc_time = start_timer!(|| "Accumulating elements");
        let mut curr_challenge = opening_challenge;

        // Keeps track of running combination of values
        let mut combined_values = E::Fr::zero();

        // Iterates through all of the commitments and accumulates common degree_bound elements in a BTreeMap
        for (labeled_comm, value) in commitments.into_iter().zip(values) {
            combined_values += &(value * &curr_challenge);

            let comm = labeled_comm.commitment();
            let degree_bound = labeled_comm.degree_bound();

            // Applying opening challenge and randomness (used in batch_checking)
            let mut comm_with_challenge: E::G1Projective = comm.0.mul(curr_challenge);

            if let Some(randomizer) = randomizer {
                comm_with_challenge = comm_with_challenge.mul(&randomizer);
            }

            // Accumulate values in the BTreeMap
            *combined_comms.entry(degree_bound).or_insert_with(E::G1Projective::zero) += &comm_with_challenge;
            curr_challenge *= &opening_challenge;
        }

        // Push expected results into list of elems. Power will be the negative of the expected power
        let mut witness: E::G1Projective = proof.w.into_projective();
        let mut adjusted_witness = vk.g.mul(combined_values) - &proof.w.mul(point);
        if let Some(random_v) = proof.random_v {
            adjusted_witness += &vk.gamma_g.mul(random_v);
        }

        if let Some(randomizer) = randomizer {
            witness = witness.mul(&randomizer);
            adjusted_witness = adjusted_witness.mul(&randomizer);
        }

        *combined_witness += &witness;
        *combined_adjusted_witness += &adjusted_witness;
        end_timer!(acc_time);
    }

    #[allow(clippy::type_complexity)]
    fn check_elems(
        combined_comms: BTreeMap<Option<usize>, E::G1Projective>,
        combined_witness: E::G1Projective,
        combined_adjusted_witness: E::G1Projective,
        vk: &VerifierKey<E>,
    ) -> Result<bool, Error> {
        let check_time = start_timer!(|| "Checking elems");
        let mut g1_projective_elems = Vec::with_capacity(combined_comms.len() + 2);
        let mut g2_prepared_elems = Vec::with_capacity(combined_comms.len() + 2);

        for (degree_bound, comm) in combined_comms.into_iter() {
            let shift_power = if let Some(degree_bound) = degree_bound {
                vk.get_shift_power(degree_bound)
                    .ok_or(Error::UnsupportedDegreeBound(degree_bound))?
            } else {
                vk.prepared_h.clone()
            };

            g1_projective_elems.push(comm);
            g2_prepared_elems.push(shift_power);
        }

        g1_projective_elems.push(-combined_adjusted_witness);
        g2_prepared_elems.push(vk.prepared_h.clone());

        g1_projective_elems.push(-combined_witness);
        g2_prepared_elems.push(vk.prepared_beta_h.clone());

        let g1_prepared_elems_iter = E::G1Projective::batch_normalization_into_affine(g1_projective_elems)
            .into_iter()
            .map(|a| a.prepare())
            .collect::<Vec<_>>();

        let g1_g2_prepared = g1_prepared_elems_iter.iter().zip(g2_prepared_elems.iter());
        let is_one: bool = E::product_of_pairings(g1_g2_prepared).is_one();
        end_timer!(check_time);
        Ok(is_one)
    }
}

impl<E: PairingEngine> PolynomialCommitment<E::Fr> for SonicKZG10<E> {
    type BatchProof = Vec<Self::Proof>;
    type Commitment = Commitment<E>;
    type CommitterKey = CommitterKey<E>;
    type Error = Error;
    type Proof = kzg10::Proof<E>;
    type Randomness = Randomness<E>;
    type UniversalParams = UniversalParams<E>;
    type VerifierKey = VerifierKey<E>;

    fn setup<R: RngCore>(max_degree: usize, rng: &mut R) -> Result<Self::UniversalParams, Self::Error> {
        kzg10::KZG10::setup(max_degree, true, rng).map_err(Into::into)
    }

    fn trim(
        pp: &Self::UniversalParams,
        supported_degree: usize,
        supported_hiding_bound: usize,
        enforced_degree_bounds: Option<&[usize]>,
    ) -> Result<(Self::CommitterKey, Self::VerifierKey), Self::Error> {
        let trim_time = start_timer!(|| "Trimming public parameters");
        let prepared_neg_powers_of_h = &pp.prepared_neg_powers_of_h;
        let max_degree = pp.max_degree();
        if supported_degree > max_degree {
            return Err(Error::TrimmingDegreeTooLarge);
        }

        let enforced_degree_bounds = enforced_degree_bounds.map(|bounds| {
            let mut v = bounds.to_vec();
            v.sort_unstable();
            v.dedup();
            v
        });

        let (shifted_powers_of_g, shifted_powers_of_gamma_g, degree_bounds_and_prepared_neg_powers_of_h) =
            if let Some(enforced_degree_bounds) = enforced_degree_bounds.as_ref() {
                if enforced_degree_bounds.is_empty() {
                    (None, None, None)
                } else {
                    let highest_enforced_degree_bound = *enforced_degree_bounds.last().unwrap();
                    if highest_enforced_degree_bound > supported_degree {
                        return Err(Error::UnsupportedDegreeBound(highest_enforced_degree_bound));
                    }

                    let lowest_shift_degree = max_degree - highest_enforced_degree_bound;

                    let shifted_ck_time = start_timer!(|| format!(
                        "Constructing `shifted_powers` of size {}",
                        max_degree - lowest_shift_degree + 1
                    ));

                    let shifted_powers_of_g = pp.powers_of_g[lowest_shift_degree..].to_vec();
                    let mut shifted_powers_of_gamma_g = BTreeMap::new();
                    // Also add degree 0.
                    let _max_gamma_g = pp.powers_of_gamma_g.keys().last().unwrap();
                    for degree_bound in enforced_degree_bounds {
                        let shift_degree = max_degree - degree_bound;
                        let mut powers_for_degree_bound =
                            Vec::with_capacity((max_degree + 2).saturating_sub(shift_degree));
                        for i in 0..=supported_hiding_bound + 1 {
                            // We have an additional degree in `powers_of_gamma_g` beyond `powers_of_g`.
                            if shift_degree + i < max_degree + 2 {
                                powers_for_degree_bound.push(pp.powers_of_gamma_g[&(shift_degree + i)]);
                            }
                        }
                        shifted_powers_of_gamma_g.insert(*degree_bound, powers_for_degree_bound);
                    }

                    end_timer!(shifted_ck_time);

                    let prepared_neg_powers_of_h_time = start_timer!(|| format!(
                        "Constructing `prepared_neg_powers_of_h` of size {}",
                        enforced_degree_bounds.len()
                    ));

                    let degree_bounds_and_prepared_neg_powers_of_h = enforced_degree_bounds
                        .iter()
                        .map(|bound| (*bound, prepared_neg_powers_of_h[&(max_degree - *bound)].clone()))
                        .collect();

                    end_timer!(prepared_neg_powers_of_h_time);

                    (
                        Some(shifted_powers_of_g),
                        Some(shifted_powers_of_gamma_g),
                        Some(degree_bounds_and_prepared_neg_powers_of_h),
                    )
                }
            } else {
                (None, None, None)
            };

        let powers_of_g = pp.powers_of_g[..=supported_degree].to_vec();
        let powers_of_gamma_g = (0..=supported_hiding_bound + 1)
            .map(|i| pp.powers_of_gamma_g[&i])
            .collect();

        let ck = CommitterKey {
            powers_of_g,
            powers_of_gamma_g,
            shifted_powers_of_g,
            shifted_powers_of_gamma_g,
            enforced_degree_bounds,
            max_degree,
        };

        let g = pp.powers_of_g[0];
        let h = pp.h;
        let beta_h = pp.beta_h;
        let gamma_g = pp.powers_of_gamma_g[&0];
        let prepared_h = (&pp.prepared_h).clone();
        let prepared_beta_h = (&pp.prepared_beta_h).clone();

        let vk = VerifierKey {
            g,
            gamma_g,
            h,
            beta_h,
            prepared_h,
            prepared_beta_h,
            degree_bounds_and_prepared_neg_powers_of_h,
            supported_degree,
            max_degree,
        };

        end_timer!(trim_time);
        Ok((ck, vk))
    }

    /// Outputs a commitment to `polynomial`.
    #[allow(clippy::type_complexity)]
    fn commit<'a>(
        ck: &Self::CommitterKey,
        polynomials: impl IntoIterator<Item = &'a LabeledPolynomial<E::Fr>>,
        rng: Option<&mut dyn RngCore>,
    ) -> Result<(Vec<LabeledCommitment<Self::Commitment>>, Vec<Self::Randomness>), Self::Error> {
        let rng = &mut crate::optional_rng::OptionalRng(rng);
        let commit_time = start_timer!(|| "Committing to polynomials");
        let mut labeled_comms: Vec<LabeledCommitment<Self::Commitment>> = Vec::new();
        let mut randomness: Vec<Self::Randomness> = Vec::new();

        for labeled_polynomial in polynomials {
            let enforced_degree_bounds: Option<&[usize]> = ck.enforced_degree_bounds.as_deref();

            kzg10::KZG10::<E>::check_degrees_and_bounds(
                ck.supported_degree(),
                ck.max_degree,
                enforced_degree_bounds,
                &labeled_polynomial,
            )?;

            let polynomial = labeled_polynomial.polynomial();
            let degree_bound = labeled_polynomial.degree_bound();
            let hiding_bound = labeled_polynomial.hiding_bound();
            let label = labeled_polynomial.label();

            let commit_time = start_timer!(|| format!(
                "Polynomial {} of degree {}, degree bound {:?}, and hiding bound {:?}",
                label,
                polynomial.degree(),
                degree_bound,
                hiding_bound,
            ));

            let powers = if let Some(degree_bound) = degree_bound {
                ck.shifted_powers(degree_bound).unwrap()
            } else {
                ck.powers()
            };

            let (comm, rand) = kzg10::KZG10::commit(&powers, &polynomial, hiding_bound, Some(rng))?;

            labeled_comms.push(LabeledCommitment::new(label.to_string(), comm, degree_bound));
            randomness.push(rand);
            end_timer!(commit_time);
        }

        end_timer!(commit_time);
        Ok((labeled_comms, randomness))
    }

    fn open<'a>(
        ck: &Self::CommitterKey,
        labeled_polynomials: impl IntoIterator<Item = &'a LabeledPolynomial<E::Fr>>,
        _commitments: impl IntoIterator<Item = &'a LabeledCommitment<Self::Commitment>>,
        point: E::Fr,
        opening_challenge: E::Fr,
        rands: impl IntoIterator<Item = &'a Self::Randomness>,
        _rng: Option<&mut dyn RngCore>,
    ) -> Result<Self::Proof, Self::Error>
    where
        Self::Randomness: 'a,
        Self::Commitment: 'a,
    {
        let mut combined_polynomial = Polynomial::zero();
        let mut combined_rand = kzg10::Randomness::empty();
        let mut curr_challenge = opening_challenge;

        for (polynomial, rand) in labeled_polynomials.into_iter().zip(rands) {
            let enforced_degree_bounds: Option<&[usize]> = ck.enforced_degree_bounds.as_deref();

            kzg10::KZG10::<E>::check_degrees_and_bounds(
                ck.supported_degree(),
                ck.max_degree,
                enforced_degree_bounds,
                &polynomial,
            )?;

            combined_polynomial += (curr_challenge, polynomial.polynomial());
            combined_rand += (curr_challenge, rand);
            curr_challenge *= &opening_challenge;
        }

        let proof_time = start_timer!(|| "Creating proof for polynomials");
        let proof = kzg10::KZG10::open(&ck.powers(), &combined_polynomial, point, &combined_rand)?;
        end_timer!(proof_time);

        Ok(proof)
    }

    fn check<'a, R: RngCore>(
        vk: &Self::VerifierKey,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Self::Commitment>>,
        point: E::Fr,
        values: impl IntoIterator<Item = E::Fr>,
        proof: &Self::Proof,
        opening_challenge: E::Fr,
        _rng: &mut R,
    ) -> Result<bool, Self::Error>
    where
        Self::Commitment: 'a,
    {
        let check_time = start_timer!(|| "Checking evaluations");
        let mut combined_comms: BTreeMap<Option<usize>, E::G1Projective> = BTreeMap::new();
        let mut combined_witness: E::G1Projective = E::G1Projective::zero();
        let mut combined_adjusted_witness: E::G1Projective = E::G1Projective::zero();

        Self::accumulate_elems(
            &mut combined_comms,
            &mut combined_witness,
            &mut combined_adjusted_witness,
            vk,
            commitments,
            point,
            values,
            proof,
            opening_challenge,
            None,
        );

        let res = Self::check_elems(combined_comms, combined_witness, combined_adjusted_witness, vk);
        end_timer!(check_time);
        res
    }

    fn batch_check<'a, R: RngCore>(
        vk: &Self::VerifierKey,
        commitments: impl Iterator<Item = LabeledCommitment<Self::Commitment>>,
        query_set: &QuerySet<E::Fr>,
        values: &Evaluations<E::Fr>,
        proof: &Self::BatchProof,
        opening_challenge: E::Fr,
        rng: &mut R,
    ) -> Result<bool, Self::Error>
    where
        Self::Commitment: 'a,
    {
        let commitments: BTreeMap<_, _> = commitments.into_iter().map(|c| (c.label().to_owned(), c)).collect();
        let mut query_to_labels_map = BTreeMap::new();

        for (label, point) in query_set.iter() {
            let labels = query_to_labels_map.entry(point).or_insert_with(BTreeSet::new);
            labels.insert(label);
        }

        assert_eq!(proof.len(), query_to_labels_map.len());

        let mut randomizer = E::Fr::one();

        let mut combined_comms: BTreeMap<Option<usize>, E::G1Projective> = BTreeMap::new();
        let mut combined_witness: E::G1Projective = E::G1Projective::zero();
        let mut combined_adjusted_witness: E::G1Projective = E::G1Projective::zero();

        for ((query, labels), p) in query_to_labels_map.into_iter().zip(proof) {
            let mut comms_to_combine: Vec<&'_ LabeledCommitment<_>> = Vec::new();
            let mut values_to_combine = Vec::new();
            for label in labels.into_iter() {
                let commitment = commitments.get(label).ok_or(Error::MissingPolynomial {
                    label: label.to_string(),
                })?;

                let v_i = values.get(&(label.clone(), *query)).ok_or(Error::MissingEvaluation {
                    label: label.to_string(),
                })?;

                comms_to_combine.push(commitment);
                values_to_combine.push(*v_i);
            }

            Self::accumulate_elems(
                &mut combined_comms,
                &mut combined_witness,
                &mut combined_adjusted_witness,
                vk,
                comms_to_combine.into_iter(),
                *query,
                values_to_combine.into_iter(),
                p,
                opening_challenge,
                Some(randomizer),
            );

            randomizer = u128::rand(rng).into();
        }

        Self::check_elems(combined_comms, combined_witness, combined_adjusted_witness, vk)
    }

    fn open_combinations<'a>(
        ck: &Self::CommitterKey,
        lc_s: impl IntoIterator<Item = &'a LinearCombination<E::Fr>>,
        polynomials: impl IntoIterator<Item = &'a LabeledPolynomial<E::Fr>>,
        commitments: impl IntoIterator<Item = &'a LabeledCommitment<Self::Commitment>>,
        query_set: &QuerySet<E::Fr>,
        opening_challenge: E::Fr,
        rands: impl IntoIterator<Item = &'a Self::Randomness>,
        rng: Option<&mut dyn RngCore>,
    ) -> Result<BatchLCProof<E::Fr, Self>, Self::Error>
    where
        Self::Randomness: 'a,
        Self::Commitment: 'a,
    {
        let label_map = polynomials
            .into_iter()
            .zip(rands)
            .zip(commitments)
            .map(|((p, r), c)| (p.label(), (p, r, c)))
            .collect::<BTreeMap<_, _>>();

        let mut lc_polynomials = Vec::new();
        let mut lc_randomness = Vec::new();
        let mut lc_commitments = Vec::new();
        let mut lc_info = Vec::new();

        for lc in lc_s {
            let lc_label = lc.label().clone();
            let mut poly = Polynomial::zero();
            let mut degree_bound = None;
            let mut hiding_bound = None;
            let mut randomness = Self::Randomness::empty();
            let mut comm = E::G1Projective::zero();

            let num_polys = lc.len();
            for (coeff, label) in lc.iter().filter(|(_, l)| !l.is_one()) {
                let label: &String = label.try_into().expect("cannot be one!");
                let &(cur_poly, cur_rand, curr_comm) = label_map.get(label).ok_or(Error::MissingPolynomial {
                    label: label.to_string(),
                })?;

                if num_polys == 1 && cur_poly.degree_bound().is_some() {
                    assert!(coeff.is_one(), "Coefficient must be one for degree-bounded equations");
                    degree_bound = cur_poly.degree_bound();
                } else if cur_poly.degree_bound().is_some() {
                    eprintln!("Degree bound when number of equations is non-zero");
                    return Err(Self::Error::EquationHasDegreeBounds(lc_label));
                }

                // Some(_) > None, always.
                hiding_bound = core::cmp::max(hiding_bound, cur_poly.hiding_bound());
                poly += (*coeff, cur_poly.polynomial());
                randomness += (*coeff, cur_rand);
                comm += &curr_comm.commitment().0.into_projective().mul(coeff);
            }

            let lc_poly = LabeledPolynomial::new_owned(lc_label.clone(), poly, degree_bound, hiding_bound);
            lc_polynomials.push(lc_poly);
            lc_randomness.push(randomness);
            lc_commitments.push(comm);
            lc_info.push((lc_label, degree_bound));
        }

        let comms: Vec<Self::Commitment> = E::G1Projective::batch_normalization_into_affine(lc_commitments)
            .into_iter()
            .map(kzg10::Commitment::<E>)
            .collect();

        let lc_commitments = lc_info
            .into_iter()
            .zip(comms)
            .map(|((label, d), c)| LabeledCommitment::new(label, c, d))
            .collect::<Vec<_>>();

        let proof = Self::batch_open(
            ck,
            lc_polynomials.iter(),
            lc_commitments.iter(),
            &query_set,
            opening_challenge,
            lc_randomness.iter(),
            rng,
        )?;
        Ok(BatchLCProof {
            proof,
            evaluations: None,
        })
    }

    /// Checks that `values` are the true evaluations at `query_set` of the polynomials
    /// committed in `labeled_commitments`.
    fn check_combinations<'a, R: RngCore>(
        vk: &Self::VerifierKey,
        lc_s: impl IntoIterator<Item = &'a LinearCombination<E::Fr>>,
        commitments: impl Iterator<Item = LabeledCommitment<Self::Commitment>>,
        query_set: &QuerySet<E::Fr>,
        evaluations: &Evaluations<E::Fr>,
        proof: &BatchLCProof<E::Fr, Self>,
        opening_challenge: E::Fr,
        rng: &mut R,
    ) -> Result<bool, Self::Error>
    where
        Self::Commitment: 'a,
    {
        let BatchLCProof { proof, .. } = proof;
        let label_comm_map = commitments
            .into_iter()
            .map(|c| (c.label().to_owned(), c))
            .collect::<BTreeMap<_, _>>();

        let mut lc_commitments = Vec::new();
        let mut lc_info = Vec::new();
        let mut evaluations = evaluations.clone();
        for lc in lc_s {
            let lc_label = lc.label().clone();
            let num_polys = lc.len();

            let mut degree_bound = None;
            let mut combined_comm = E::G1Projective::zero();

            for (coeff, label) in lc.iter() {
                if label.is_one() {
                    for (&(ref label, _), ref mut eval) in evaluations.iter_mut() {
                        if label == &lc_label {
                            **eval -= coeff;
                        }
                    }
                } else {
                    let label: String = label.to_owned().try_into().unwrap();
                    let cur_comm = label_comm_map.get(&label).ok_or(Error::MissingPolynomial {
                        label: label.to_string(),
                    })?;

                    if num_polys == 1 && cur_comm.degree_bound().is_some() {
                        assert!(coeff.is_one(), "Coefficient must be one for degree-bounded equations");
                        degree_bound = cur_comm.degree_bound();
                    } else if cur_comm.degree_bound().is_some() {
                        return Err(Self::Error::EquationHasDegreeBounds(lc_label));
                    }
                    combined_comm += &cur_comm.commitment().0.mul(*coeff);
                }
            }

            lc_commitments.push(combined_comm);
            lc_info.push((lc_label, degree_bound));
        }

        let comms = E::G1Projective::batch_normalization_into_affine(lc_commitments)
            .into_iter()
            .map(kzg10::Commitment);

        let lc_commitments = lc_info
            .into_iter()
            .zip(comms)
            .map(|((label, d), c)| LabeledCommitment::new(label, c, d));

        Self::batch_check(
            vk,
            lc_commitments,
            &query_set,
            &evaluations,
            proof,
            opening_challenge,
            rng,
        )
    }
}

#[cfg(test)]
mod tests {
    #![allow(non_camel_case_types)]

    use super::SonicKZG10;
    use snarkvm_curves::bls12_377::Bls12_377;

    type PC<E> = SonicKZG10<E>;
    type PC_Bls12_377 = PC<Bls12_377>;

    #[test]
    fn single_poly_test() {
        use crate::tests::*;
        single_poly_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn quadratic_poly_degree_bound_multiple_queries_test() {
        use crate::tests::*;
        quadratic_poly_degree_bound_multiple_queries_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn linear_poly_degree_bound_test() {
        use crate::tests::*;
        linear_poly_degree_bound_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn single_poly_degree_bound_test() {
        use crate::tests::*;
        single_poly_degree_bound_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn single_poly_degree_bound_multiple_queries_test() {
        use crate::tests::*;
        single_poly_degree_bound_multiple_queries_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn two_polys_degree_bound_single_query_test() {
        use crate::tests::*;
        two_polys_degree_bound_single_query_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
    }

    #[test]
    fn full_end_to_end_test() {
        use crate::tests::*;
        full_end_to_end_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn single_equation_test() {
        use crate::tests::*;
        single_equation_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn two_equation_test() {
        use crate::tests::*;
        two_equation_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn two_equation_degree_bound_test() {
        use crate::tests::*;
        two_equation_degree_bound_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    fn full_end_to_end_equation_test() {
        use crate::tests::*;
        full_end_to_end_equation_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }

    #[test]
    #[should_panic]
    fn bad_degree_bound_test() {
        use crate::tests::*;
        bad_degree_bound_test::<_, PC_Bls12_377>().expect("test failed for bls12-377");
        println!("Finished bls12-377");
    }
}