snarkvm_parameters/mainnet/
powers.rs

1// Copyright (c) 2019-2025 Provable Inc.
2// This file is part of the snarkVM library.
3
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at:
7
8// http://www.apache.org/licenses/LICENSE-2.0
9
10// Unless required by applicable law or agreed to in writing, software
11// distributed under the License is distributed on an "AS IS" BASIS,
12// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13// See the License for the specific language governing permissions and
14// limitations under the License.
15
16use super::*;
17use snarkvm_curves::traits::{PairingCurve, PairingEngine};
18use snarkvm_utilities::{
19    CanonicalDeserialize,
20    CanonicalSerialize,
21    Compress,
22    FromBytes,
23    Read,
24    SerializationError,
25    ToBytes,
26    Valid,
27    Validate,
28    Write,
29    dev_println,
30};
31
32use anyhow::{Result, anyhow, bail, ensure};
33#[cfg(feature = "locktick")]
34use locktick::parking_lot::RwLock;
35#[cfg(not(feature = "locktick"))]
36use parking_lot::RwLock;
37use std::{collections::BTreeMap, ops::Range, sync::Arc};
38
39const NUM_POWERS_15: usize = 1 << 15;
40const NUM_POWERS_16: usize = 1 << 16;
41const NUM_POWERS_17: usize = 1 << 17;
42const NUM_POWERS_18: usize = 1 << 18;
43const NUM_POWERS_19: usize = 1 << 19;
44const NUM_POWERS_20: usize = 1 << 20;
45const NUM_POWERS_21: usize = 1 << 21;
46const NUM_POWERS_22: usize = 1 << 22;
47const NUM_POWERS_23: usize = 1 << 23;
48const NUM_POWERS_24: usize = 1 << 24;
49const NUM_POWERS_25: usize = 1 << 25;
50// TODO (nkls): restore on CI.
51// The SRS is only used for proving and we don't currently support provers of
52// this size. When a users wants to create a proof, they load the appropriate
53// powers for the circuit in `batch_circuit_setup` which calls `max_degree`
54// based on the domain size.
55#[cfg(feature = "large_params")]
56const NUM_POWERS_26: usize = 1 << 26;
57#[cfg(feature = "large_params")]
58const NUM_POWERS_27: usize = 1 << 27;
59const NUM_POWERS_28: usize = 1 << 28;
60
61/// The maximum degree supported by the SRS.
62pub const MAX_NUM_POWERS: usize = NUM_POWERS_28;
63
64lazy_static::lazy_static! {
65    static ref POWERS_OF_BETA_G_15: Vec<u8> = Degree15::load_bytes().expect("Failed to load powers of beta in universal SRS");
66    static ref SHIFTED_POWERS_OF_BETA_G_15: Vec<u8> = ShiftedDegree15::load_bytes().expect("Failed to load powers of beta in universal SRS");
67    static ref POWERS_OF_BETA_GAMMA_G: Vec<u8> = Gamma::load_bytes().expect("Failed to load powers of beta wrt gamma * G in universal SRS");
68    static ref NEG_POWERS_OF_BETA_H: Vec<u8> = NegBeta::load_bytes().expect("Failed to load negative powers of beta in universal SRS");
69    static ref BETA_H: Vec<u8> = BetaH::load_bytes().expect("Failed to load negative powers of beta in universal SRS");
70}
71
72/// A vector of powers of beta G.
73#[derive(Debug)]
74pub struct PowersOfG<E: PairingEngine> {
75    /// The powers of beta G.
76    powers_of_beta_g: RwLock<PowersOfBetaG<E>>,
77    /// Group elements of form `{ \beta^i \gamma G }`, where `i` is from 0 to `degree`,
78    /// This is used for hiding.
79    powers_of_beta_times_gamma_g: BTreeMap<usize, E::G1Affine>,
80    /// Group elements of form `{ \beta^{max_degree - i} H }`, where `i`
81    /// is of the form `2^k - 1` for `k` in `1` to `log_2(max_degree)`.
82    negative_powers_of_beta_h: BTreeMap<usize, E::G2Affine>,
83    /// Information required to enforce degree bounds. Each pair is of the form `(degree_bound, shifting_advice)`.
84    /// Each pair is in the form `(degree_bound, \beta^{max_degree - i} H),` where `H` is the generator of G2,
85    /// and `i` is of the form `2^k - 1` for `k` in `1` to `log_2(max_degree)`.
86    prepared_negative_powers_of_beta_h: Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>>,
87    /// beta * h
88    beta_h: E::G2Affine,
89}
90
91impl<E: PairingEngine> PowersOfG<E> {
92    /// Initializes the hard-coded instance of the powers.
93    pub fn load() -> Result<Self> {
94        let powers_of_beta_g = RwLock::new(PowersOfBetaG::load()?);
95
96        // Reconstruct powers of beta_times_gamma_g.
97        let powers_of_beta_times_gamma_g = BTreeMap::deserialize_uncompressed_unchecked(&**POWERS_OF_BETA_GAMMA_G)?;
98
99        // Reconstruct negative powers of beta_h.
100        let negative_powers_of_beta_h: BTreeMap<usize, E::G2Affine> =
101            BTreeMap::deserialize_uncompressed_unchecked(&**NEG_POWERS_OF_BETA_H)?;
102
103        // Compute the prepared negative powers of beta_h.
104        let prepared_negative_powers_of_beta_h: Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>> =
105            Arc::new(negative_powers_of_beta_h.iter().map(|(d, affine)| (*d, affine.prepare())).collect());
106
107        let beta_h = E::G2Affine::deserialize_uncompressed_unchecked(&**BETA_H)?;
108
109        // Return the powers.
110        Ok(Self {
111            powers_of_beta_g,
112            powers_of_beta_times_gamma_g,
113            negative_powers_of_beta_h,
114            prepared_negative_powers_of_beta_h,
115            beta_h,
116        })
117    }
118
119    /// Download the powers of beta G specified by `range`.
120    pub fn download_powers_for(&self, range: Range<usize>) -> Result<()> {
121        self.powers_of_beta_g.write().download_powers_for(&range)
122    }
123
124    /// Returns the number of contiguous powers of beta G starting from the 0-th power.
125    pub fn num_powers(&self) -> usize {
126        self.powers_of_beta_g.read().num_powers()
127    }
128
129    /// Returns the maximum possible number of contiguous powers of beta G starting from the 0-th power.
130    pub fn max_num_powers(&self) -> usize {
131        MAX_NUM_POWERS
132    }
133
134    /// Returns the powers of beta * gamma G.
135    pub fn powers_of_beta_gamma_g(&self) -> &BTreeMap<usize, E::G1Affine> {
136        &self.powers_of_beta_times_gamma_g
137    }
138
139    /// Returns the `index`-th power of beta * G.
140    pub fn power_of_beta_g(&self, index: usize) -> Result<E::G1Affine> {
141        self.powers_of_beta_g.write().power(index)
142    }
143
144    /// Returns the powers of `beta * G` that lie within `range`.
145    pub fn powers_of_beta_g(&self, range: Range<usize>) -> Result<Vec<E::G1Affine>> {
146        Ok(self.powers_of_beta_g.write().powers(range)?.to_vec())
147    }
148
149    pub fn negative_powers_of_beta_h(&self) -> &BTreeMap<usize, E::G2Affine> {
150        &self.negative_powers_of_beta_h
151    }
152
153    pub fn prepared_negative_powers_of_beta_h(&self) -> Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>> {
154        self.prepared_negative_powers_of_beta_h.clone()
155    }
156
157    pub fn beta_h(&self) -> E::G2Affine {
158        self.beta_h
159    }
160}
161
162impl<E: PairingEngine> CanonicalSerialize for PowersOfG<E> {
163    fn serialize_with_mode<W: Write>(&self, mut writer: W, mode: Compress) -> Result<(), SerializationError> {
164        self.powers_of_beta_g.read().serialize_with_mode(&mut writer, mode)?;
165        self.powers_of_beta_times_gamma_g.serialize_with_mode(&mut writer, mode)?;
166        self.negative_powers_of_beta_h.serialize_with_mode(&mut writer, mode)?;
167        self.beta_h.serialize_with_mode(&mut writer, mode)?;
168        Ok(())
169    }
170
171    fn serialized_size(&self, mode: Compress) -> usize {
172        self.powers_of_beta_g.read().serialized_size(mode)
173            + self.powers_of_beta_times_gamma_g.serialized_size(mode)
174            + self.negative_powers_of_beta_h.serialized_size(mode)
175            + self.beta_h.serialized_size(mode)
176    }
177}
178
179impl<E: PairingEngine> CanonicalDeserialize for PowersOfG<E> {
180    fn deserialize_with_mode<R: Read>(mut reader: R, compress: Compress, validate: Validate) -> Result<Self, SerializationError> {
181        let powers_of_beta_g = RwLock::new(PowersOfBetaG::deserialize_with_mode(&mut reader, compress, Validate::No)?);
182
183        // Reconstruct powers of beta_times_gamma_g.
184        let powers_of_beta_times_gamma_g = BTreeMap::deserialize_with_mode(&mut reader, compress, Validate::No)?;
185
186        // Reconstruct negative powers of beta_h.
187        let negative_powers_of_beta_h: BTreeMap<usize, E::G2Affine> =
188            BTreeMap::deserialize_with_mode(&mut reader, compress, Validate::No)?;
189
190        // Compute the prepared negative powers of beta_h.
191        let prepared_negative_powers_of_beta_h: Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>> =
192            Arc::new(negative_powers_of_beta_h.iter().map(|(d, affine)| (*d, affine.prepare())).collect());
193
194        let beta_h = E::G2Affine::deserialize_with_mode(&mut reader, compress, Validate::No)?;
195
196        let powers = Self {
197            powers_of_beta_g,
198            powers_of_beta_times_gamma_g,
199            negative_powers_of_beta_h,
200            prepared_negative_powers_of_beta_h,
201            beta_h,
202        };
203        if let Validate::Yes = validate {
204            powers.check()?;
205        }
206        Ok(powers)
207    }
208}
209
210impl<E: PairingEngine> Valid for PowersOfG<E> {
211    fn check(&self) -> Result<(), SerializationError> {
212        self.powers_of_beta_g.read().check()?;
213        self.powers_of_beta_times_gamma_g.check()?;
214        self.negative_powers_of_beta_h.check()?;
215        self.prepared_negative_powers_of_beta_h.check()?;
216        self.beta_h.check()
217    }
218}
219
220impl<E: PairingEngine> FromBytes for PowersOfG<E> {
221    /// Reads the powers from the buffer.
222    fn read_le<R: Read>(reader: R) -> std::io::Result<Self> {
223        Self::deserialize_with_mode(reader, Compress::No, Validate::No).map_err(|e| e.into())
224    }
225}
226
227impl<E: PairingEngine> ToBytes for PowersOfG<E> {
228    /// Writes the powers to the buffer.
229    fn write_le<W: Write>(&self, writer: W) -> std::io::Result<()> {
230        self.serialize_with_mode(writer, Compress::No).map_err(|e| e.into())
231    }
232}
233
234#[derive(Debug, CanonicalSerialize, CanonicalDeserialize)]
235pub struct PowersOfBetaG<E: PairingEngine> {
236    /// Group elements of form `[G, \beta * G, \beta^2 * G, ..., \beta^d G]`.
237    powers_of_beta_g: Vec<E::G1Affine>,
238    /// Group elements of form `[\beta^i * G, \beta^2 * G, ..., \beta^D G]`.
239    /// where D is the maximum degree supported by the SRS.
240    shifted_powers_of_beta_g: Vec<E::G1Affine>,
241}
242
243impl<E: PairingEngine> PowersOfBetaG<E> {
244    /// Returns the number of contiguous powers of beta G starting from the 0-th power.
245    pub fn num_powers(&self) -> usize {
246        self.powers_of_beta_g.len()
247    }
248
249    /// Initializes the hard-coded instance of the powers.
250    fn load() -> Result<Self> {
251        // Deserialize the group elements.
252        let powers_of_beta_g = Vec::deserialize_uncompressed_unchecked(&**POWERS_OF_BETA_G_15)?;
253
254        // Ensure the number of elements is correct.
255        ensure!(powers_of_beta_g.len() == NUM_POWERS_15, "Incorrect number of powers in the recovered SRS");
256
257        let shifted_powers_of_beta_g = Vec::deserialize_uncompressed_unchecked(&**SHIFTED_POWERS_OF_BETA_G_15)?;
258        ensure!(shifted_powers_of_beta_g.len() == NUM_POWERS_15, "Incorrect number of powers in the recovered SRS");
259        Ok(PowersOfBetaG { powers_of_beta_g, shifted_powers_of_beta_g })
260    }
261
262    /// Returns the range of powers of beta G.
263    /// In detail, it returns the range of the available "normal" powers of beta G, i.e. the
264    /// contiguous range of powers of beta G starting from G, and, the range of shifted_powers.
265    ///
266    /// For example, if the output of this function is `(0..8, 24..32)`, then `self`
267    /// contains the powers
268    /// * `beta^0 * G, beta^1 * G, ..., beta^7 * G`, and
269    /// * `beta^24 * G, ..., beta^31 * G`.
270    pub fn available_powers(&self) -> (Range<usize>, Range<usize>) {
271        if !self.shifted_powers_of_beta_g.is_empty() {
272            let lower_shifted_bound = MAX_NUM_POWERS - self.shifted_powers_of_beta_g.len();
273            ((0..self.powers_of_beta_g.len()), (lower_shifted_bound..MAX_NUM_POWERS))
274        } else {
275            // We can only be in this case if have downloaded all possible powers.
276            assert_eq!(self.powers_of_beta_g.len(), MAX_NUM_POWERS, "Incorrect number of powers in the recovered SRS");
277            ((0..MAX_NUM_POWERS), (0..MAX_NUM_POWERS))
278        }
279    }
280
281    fn contains_in_normal_powers(&self, range: &Range<usize>) -> bool {
282        let (normal, _) = self.available_powers();
283        normal.contains(&range.start) && (normal.end >= range.end)
284    }
285
286    fn contains_in_shifted_powers(&self, range: &Range<usize>) -> bool {
287        let (_, shifted) = self.available_powers();
288        shifted.contains(&range.start) && (shifted.end >= range.end)
289    }
290
291    fn contains_powers(&self, range: &Range<usize>) -> bool {
292        self.contains_in_normal_powers(range) || self.contains_in_shifted_powers(range)
293    }
294
295    fn distance_from_normal_of(&self, range: &Range<usize>) -> usize {
296        (range.end as isize - self.available_powers().0.end as isize).unsigned_abs()
297    }
298
299    fn distance_from_shifted_of(&self, range: &Range<usize>) -> usize {
300        (range.start as isize - self.available_powers().1.start as isize).unsigned_abs()
301    }
302
303    /// Assumes that we have the requisite powers.
304    fn shifted_powers(&self, range: Range<usize>) -> Result<&[E::G1Affine]> {
305        ensure!(self.contains_in_shifted_powers(&range), "Requested range is not contained in the available shifted powers");
306
307        if range.start < MAX_NUM_POWERS / 2 {
308            ensure!(self.shifted_powers_of_beta_g.is_empty());
309            // In this case, we have downloaded all the powers, and so
310            // all the powers reside in self.powers_of_beta_g.
311            Ok(&self.powers_of_beta_g[range])
312        } else {
313            // In this case, the shifted powers still reside in self.shifted_powers_of_beta_g.
314            let lower = self.shifted_powers_of_beta_g.len() - (MAX_NUM_POWERS - range.start);
315            let upper = self.shifted_powers_of_beta_g.len() - (MAX_NUM_POWERS - range.end);
316            Ok(&self.shifted_powers_of_beta_g[lower..upper])
317        }
318    }
319
320    /// Assumes that we have the requisite powers.
321    fn normal_powers(&self, range: Range<usize>) -> Result<&[E::G1Affine]> {
322        ensure!(self.contains_in_normal_powers(&range), "Requested range is not contained in the available powers");
323        Ok(&self.powers_of_beta_g[range])
324    }
325
326    /// Returns the power of beta times G specified by `target`.
327    fn power(&mut self, target: usize) -> Result<E::G1Affine> {
328        self.powers(target..(target + 1)).map(|s| s[0])
329    }
330
331    /// Slices the underlying file to return a vector of affine elements between `lower` and `upper`.
332    fn powers(&mut self, range: Range<usize>) -> Result<&[E::G1Affine]> {
333        if range.is_empty() {
334            return Ok(&self.powers_of_beta_g[0..0]);
335        }
336        ensure!(range.start < range.end, "Lower power must be less than upper power");
337        ensure!(range.end <= MAX_NUM_POWERS, "Upper bound must be less than the maximum number of powers");
338        if !self.contains_powers(&range) {
339            // We must download the powers.
340            self.download_powers_for(&range)?;
341        }
342        match self.contains_in_normal_powers(&range) {
343            true => self.normal_powers(range),
344            false => self.shifted_powers(range),
345        }
346    }
347
348    pub fn download_powers_for(&mut self, range: &Range<usize>) -> Result<()> {
349        if self.contains_in_normal_powers(range) || self.contains_in_shifted_powers(range) {
350            return Ok(());
351        }
352        let half_max = MAX_NUM_POWERS / 2;
353        if (range.start <= half_max) && (range.end > half_max) {
354            // If the range contains the midpoint, then we must download all the powers.
355            // (because we round up to the next power of two).
356            self.download_powers_up_to(range.end)?;
357            self.shifted_powers_of_beta_g = Vec::new();
358        } else if self.distance_from_shifted_of(range) < self.distance_from_normal_of(range) {
359            // If the range is closer to the shifted powers, then we download the shifted powers.
360            self.download_shifted_powers_from(range.start)?;
361        } else {
362            // Otherwise, we download the normal powers.
363            self.download_powers_up_to(range.end)?;
364        }
365        Ok(())
366    }
367
368    /// This method downloads the universal SRS powers up to the `next_power_of_two(target_degree)`,
369    /// and updates `Self` in place with the new powers.
370    fn download_powers_up_to(&mut self, end: usize) -> Result<()> {
371        // Determine the new power of two.
372        let final_power_of_two = end.checked_next_power_of_two().ok_or_else(|| anyhow!("Requesting too many powers"))?;
373        // Ensure the total number of powers is less than the maximum number of powers.
374        ensure!(final_power_of_two <= MAX_NUM_POWERS, "Requesting more powers than exist in the SRS");
375
376        // Retrieve the current power of two.
377        let current_power_of_two =
378            self.powers_of_beta_g.len().checked_next_power_of_two().ok_or_else(|| anyhow!("The current degree is too large"))?;
379
380        // Initialize a vector for the powers of two to be downloaded.
381        let mut download_queue = Vec::with_capacity(14);
382
383        // Initialize the first degree to download.
384        let mut accumulator = current_power_of_two * 2;
385        // Determine the powers of two to download.
386        while accumulator <= final_power_of_two {
387            download_queue.push(accumulator);
388            accumulator = accumulator.checked_mul(2).ok_or_else(|| anyhow!("Overflowed while requesting a larger degree"))?;
389        }
390        ensure!(final_power_of_two * 2 == accumulator, "Ensure the loop terminates at the right power of two");
391
392        // Reserve capacity for the new powers of two.
393        let additional_size = final_power_of_two
394            .checked_sub(self.powers_of_beta_g.len())
395            .ok_or_else(|| anyhow!("final_power_of_two is smaller than existing powers"))?;
396        self.powers_of_beta_g.reserve(additional_size);
397
398        // Download the powers of two.
399        for num_powers in &download_queue {
400            dev_println!("Loading {num_powers} powers");
401
402            // Download the universal SRS powers if they're not already on disk.
403            let additional_bytes = match *num_powers {
404                NUM_POWERS_16 => Degree16::load_bytes()?,
405                NUM_POWERS_17 => Degree17::load_bytes()?,
406                NUM_POWERS_18 => Degree18::load_bytes()?,
407                NUM_POWERS_19 => Degree19::load_bytes()?,
408                NUM_POWERS_20 => Degree20::load_bytes()?,
409                NUM_POWERS_21 => Degree21::load_bytes()?,
410                NUM_POWERS_22 => Degree22::load_bytes()?,
411                NUM_POWERS_23 => Degree23::load_bytes()?,
412                NUM_POWERS_24 => Degree24::load_bytes()?,
413                NUM_POWERS_25 => Degree25::load_bytes()?,
414                // TODO (nkls): restore on CI.
415                #[cfg(feature = "large_params")]
416                NUM_POWERS_26 => Degree26::load_bytes()?,
417                #[cfg(feature = "large_params")]
418                NUM_POWERS_27 => Degree27::load_bytes()?,
419                #[cfg(feature = "large_params")]
420                NUM_POWERS_28 => Degree28::load_bytes()?,
421                _ => bail!("Cannot download an invalid degree of '{num_powers}'"),
422            };
423
424            // Deserialize the group elements.
425            let additional_powers = Vec::deserialize_uncompressed_unchecked(&*additional_bytes)?;
426            // Extend the powers.
427            self.powers_of_beta_g.extend(&additional_powers);
428        }
429        ensure!(self.powers_of_beta_g.len() == final_power_of_two, "Loaded an incorrect number of powers");
430        Ok(())
431    }
432
433    /// This method downloads the universal SRS powers from
434    /// `start` up to `MAXIMUM_NUM_POWERS - self.shifted_powers_of_beta_g.len()`,
435    /// and updates `Self` in place with the new powers.
436    fn download_shifted_powers_from(&mut self, start: usize) -> Result<()> {
437        // Ensure the total number of powers is less than the maximum number of powers.
438        ensure!(start <= MAX_NUM_POWERS, "Requesting more powers than exist in the SRS");
439
440        // The possible powers are:
441        // (2^28 - 2^15)..=(2^28)       = 2^15 powers
442        // (2^28 - 2^16)..(2^28 - 2^15) = 2^15 powers
443        // (2^28 - 2^17)..(2^28 - 2^16) = 2^16 powers
444        // (2^28 - 2^18)..(2^28 - 2^17) = 2^17 powers
445        // (2^28 - 2^19)..(2^28 - 2^18) = 2^18 powers
446        // (2^28 - 2^20)..(2^28 - 2^19) = 2^19 powers
447        // (2^28 - 2^21)..(2^28 - 2^20) = 2^20 powers
448        // (2^28 - 2^22)..(2^28 - 2^21) = 2^21 powers
449        // (2^28 - 2^23)..(2^28 - 2^22) = 2^22 powers
450        // (2^28 - 2^24)..(2^28 - 2^23) = 2^23 powers
451        // (2^28 - 2^25)..(2^28 - 2^24) = 2^24 powers
452        // (2^28 - 2^26)..(2^28 - 2^25) = 2^25 powers
453        // (2^28 - 2^27)..(2^28 - 2^26) = 2^26 powers
454
455        // Figure out the number of powers to download, as follows:
456        // Let `start := 2^28 - k`.
457        // We know that `shifted_powers_of_beta_g.len() = 2^s` such that `2^s < k`.
458        // That is, we have already downloaded the powers `2^28 - 2^s` up to `2^28`.
459        // Then, we have to download the powers 2^s..k.next_power_of_two().
460        let final_num_powers = MAX_NUM_POWERS
461            .checked_sub(start)
462            .ok_or_else(|| anyhow!("Requesting too many powers: `start ({start}) > MAX_NUM_POWERS ({MAX_NUM_POWERS})`"))?
463            .checked_next_power_of_two()
464            .ok_or_else(|| anyhow!("Requesting too many powers"))?; // Calculated k.next_power_of_two().
465
466        let mut download_queue = Vec::with_capacity(14);
467        let mut existing_num_powers = self.shifted_powers_of_beta_g.len();
468        while existing_num_powers < final_num_powers {
469            existing_num_powers =
470                existing_num_powers.checked_mul(2).ok_or_else(|| anyhow!("Overflowed while requesting additional powers"))?;
471            download_queue.push(existing_num_powers);
472        }
473        download_queue.reverse(); // We want to download starting from the smallest power.
474
475        let mut final_powers = Vec::with_capacity(final_num_powers);
476        // If the `target_degree` exceeds the current `degree`, proceed to download the new powers.
477        for num_powers in &download_queue {
478            dev_println!("Loading {num_powers} shifted powers");
479
480            // Download the universal SRS powers if they're not already on disk.
481            let additional_bytes = match *num_powers {
482                NUM_POWERS_16 => ShiftedDegree16::load_bytes()?,
483                NUM_POWERS_17 => ShiftedDegree17::load_bytes()?,
484                NUM_POWERS_18 => ShiftedDegree18::load_bytes()?,
485                NUM_POWERS_19 => ShiftedDegree19::load_bytes()?,
486                NUM_POWERS_20 => ShiftedDegree20::load_bytes()?,
487                NUM_POWERS_21 => ShiftedDegree21::load_bytes()?,
488                NUM_POWERS_22 => ShiftedDegree22::load_bytes()?,
489                NUM_POWERS_23 => ShiftedDegree23::load_bytes()?,
490                NUM_POWERS_24 => ShiftedDegree24::load_bytes()?,
491                NUM_POWERS_25 => ShiftedDegree25::load_bytes()?,
492                // TODO (nkls): restore on CI.
493                #[cfg(feature = "large_params")]
494                NUM_POWERS_26 => ShiftedDegree26::load_bytes()?,
495                #[cfg(feature = "large_params")]
496                NUM_POWERS_27 => ShiftedDegree27::load_bytes()?,
497                _ => bail!("Cannot download an invalid degree of '{num_powers}'"),
498            };
499
500            // Deserialize the group elements.
501            let additional_powers = Vec::deserialize_uncompressed_unchecked(&*additional_bytes)?;
502
503            final_powers.extend(additional_powers.iter());
504        }
505        final_powers.extend(self.shifted_powers_of_beta_g.iter());
506        self.shifted_powers_of_beta_g = final_powers;
507
508        ensure!(self.shifted_powers_of_beta_g.len() == final_num_powers, "Loaded an incorrect number of shifted powers");
509        Ok(())
510    }
511}
512
513impl<E: PairingEngine> FromBytes for PowersOfBetaG<E> {
514    /// Reads the powers from the buffer.
515    fn read_le<R: Read>(reader: R) -> std::io::Result<Self> {
516        Self::deserialize_with_mode(reader, Compress::No, Validate::No).map_err(|e| e.into())
517    }
518}
519
520impl<E: PairingEngine> ToBytes for PowersOfBetaG<E> {
521    /// Writes the powers to the buffer.
522    fn write_le<W: Write>(&self, writer: W) -> std::io::Result<()> {
523        self.serialize_with_mode(writer, Compress::No).map_err(|e| e.into())
524    }
525}